Analysis of hemolysis-associated acute myeloid leukemia genes obtained using weighted gene co-expression network analysis and a Mendelian randomization study.

IF 2.3 Q2 HEMATOLOGY
Rui Zhang, Yan Zang, Linguo Wan, Hui Yu, Zhanshan Cha, Haihui Gu
{"title":"Analysis of hemolysis-associated acute myeloid leukemia genes obtained using weighted gene co-expression network analysis and a Mendelian randomization study.","authors":"Rui Zhang, Yan Zang, Linguo Wan, Hui Yu, Zhanshan Cha, Haihui Gu","doi":"10.1007/s44313-025-00073-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We used bioinformatics methods and Mendelian randomization (MR) analysis to investigate the hub genes involved in acute myeloid leukemia (AML) and their causal relationship with hemolysis, to explore a new direction for molecular biology research of AML.</p><p><strong>Methods: </strong>We first differentially analyzed peripheral blood samples from 62 healthy volunteers and 65 patients with AML from the Gene Expression Omnibus database to obtain differentially expressed genes (DEGs), and intersected them with genes sourced from weighted gene co-expression network analysis (WGCNA) and the GeneCards database to obtain target genes. Target genes were screened using protein-protein interaction (PPI) network analysis and ROC curves to identify genes associated with AML. Finally, we analyzed the correlation between genes and immune cells and the relationship between toll-like receptor 4 (TLR4) and AML using MR.</p><p><strong>Results: </strong>We compared peripheral blood expression profiles using an array of 62 healthy volunteers (GSE164191) and 65 patients with AML (GSE89565) (M0:25; M1:11; M2:10; M3:1; M4:7; M4 eo t [16;16] ou inv [16]:4; M5:6; M6:1) and obtained 7,339 DEGs (3,733 upregulated and 3,606 downregulated). We intersected these DEGs with 4,724 genes from WGCNA and 1,330 genes related to hemolysis that were identified in the GeneCards database to obtain 190 target genes. After further screening these genes using the PPI network, we identified TLR4, PTPRC, FCGR3B, STAT1, and APOE, which are closely associated with hemolysis in patients with AML. Finally, we found a causal relationship between TLR4 and AML occurrence using MR analysis (p < 0.05).</p><p><strong>Conclusion: </strong>We constructed a WGCNA-based co-expression network and identified hemolysis-associated AML genes.</p>","PeriodicalId":46224,"journal":{"name":"Blood Research","volume":"60 1","pages":"24"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44313-025-00073-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We used bioinformatics methods and Mendelian randomization (MR) analysis to investigate the hub genes involved in acute myeloid leukemia (AML) and their causal relationship with hemolysis, to explore a new direction for molecular biology research of AML.

Methods: We first differentially analyzed peripheral blood samples from 62 healthy volunteers and 65 patients with AML from the Gene Expression Omnibus database to obtain differentially expressed genes (DEGs), and intersected them with genes sourced from weighted gene co-expression network analysis (WGCNA) and the GeneCards database to obtain target genes. Target genes were screened using protein-protein interaction (PPI) network analysis and ROC curves to identify genes associated with AML. Finally, we analyzed the correlation between genes and immune cells and the relationship between toll-like receptor 4 (TLR4) and AML using MR.

Results: We compared peripheral blood expression profiles using an array of 62 healthy volunteers (GSE164191) and 65 patients with AML (GSE89565) (M0:25; M1:11; M2:10; M3:1; M4:7; M4 eo t [16;16] ou inv [16]:4; M5:6; M6:1) and obtained 7,339 DEGs (3,733 upregulated and 3,606 downregulated). We intersected these DEGs with 4,724 genes from WGCNA and 1,330 genes related to hemolysis that were identified in the GeneCards database to obtain 190 target genes. After further screening these genes using the PPI network, we identified TLR4, PTPRC, FCGR3B, STAT1, and APOE, which are closely associated with hemolysis in patients with AML. Finally, we found a causal relationship between TLR4 and AML occurrence using MR analysis (p < 0.05).

Conclusion: We constructed a WGCNA-based co-expression network and identified hemolysis-associated AML genes.

利用加权基因共表达网络分析和孟德尔随机化研究获得溶血相关急性髓性白血病基因分析。
目的:利用生物信息学方法和孟德尔随机化(Mendelian randomization, MR)分析探讨急性髓性白血病(acute myeloid leukemia, AML)相关枢纽基因及其与溶血的因果关系,为AML分子生物学研究探索新的方向。方法:首先对来自基因表达Omnibus数据库的62名健康志愿者和65名AML患者的外周血样本进行差异分析,获得差异表达基因(deg),并将其与来自加权基因共表达网络分析(WGCNA)和GeneCards数据库的基因交叉,获得靶基因。利用蛋白-蛋白相互作用(PPI)网络分析和ROC曲线筛选靶基因,鉴定与AML相关的基因。最后,我们使用mr分析了基因与免疫细胞之间的相关性以及toll样受体4 (TLR4)与AML之间的关系。结果:我们比较了62名健康志愿者(GSE164191)和65名AML患者(GSE89565)的外周血表达谱(M0:25;M1:11;M2:10;M3:1;M4:7;[16;16] [au:] [au:]M5:6;M6:1),得到7339个deg(3733个上调,3606个下调)。我们将这些deg与来自WGCNA的4724个基因和GeneCards数据库中鉴定的1330个与溶血相关的基因进行交叉,获得190个靶基因。在使用PPI网络进一步筛选这些基因后,我们确定了TLR4、PTPRC、FCGR3B、STAT1和APOE,它们与AML患者的溶血密切相关。最后,我们通过MR分析发现TLR4与AML发生之间存在因果关系(p < 0.05)。结论:我们构建了基于wgna的共表达网络,并鉴定出溶血相关的AML基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Blood Research
Blood Research HEMATOLOGY-
CiteScore
3.70
自引率
0.00%
发文量
64
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信