{"title":"Fiber-specific expression of PdCel9A6 modifies the characteristics of wood fibers in Populus.","authors":"Jian Li, Xulei Guo, Xianwen Lu, Jiayan Sun, Yongcan Jin, Meng Li, Laigeng Li","doi":"10.1093/treephys/tpaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Wood fiber has been extensively used in the pulp and papermaking industries. The length of fiber cells is critical in determining the quality of paper. In our previous studies, we identified PdCel9A6, a gene encoding endo-1,4-β-glucanases (EGases) expressed in the developing xylem to affect cell wall formation. In this study, we modified the PdCel9A6 expression specifically in xylem fiber cells. The results showed that the fiber-specific upregulation of PdCel9A6 resulted in increased plant height and internode length. The transgenics significantly increased the fiber cell length in the wood xylem. In wood cell wall components, the transgenics showed a reduction of lignin while increasing cellulose. Furthermore, the characteristics of the paper processed from the transgenics showed a significant improvement in paper strength. Transcriptome studies showed that upregulation of PdCel9A6 in fiber cells leads to changes in transcription related to cell wall remodeling and thickening during xylem development. Together, the study demonstrated a new strategy of fiber cell wall modification that could have the potential to improve forest trees for better pulping and papermaking.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf051","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Wood fiber has been extensively used in the pulp and papermaking industries. The length of fiber cells is critical in determining the quality of paper. In our previous studies, we identified PdCel9A6, a gene encoding endo-1,4-β-glucanases (EGases) expressed in the developing xylem to affect cell wall formation. In this study, we modified the PdCel9A6 expression specifically in xylem fiber cells. The results showed that the fiber-specific upregulation of PdCel9A6 resulted in increased plant height and internode length. The transgenics significantly increased the fiber cell length in the wood xylem. In wood cell wall components, the transgenics showed a reduction of lignin while increasing cellulose. Furthermore, the characteristics of the paper processed from the transgenics showed a significant improvement in paper strength. Transcriptome studies showed that upregulation of PdCel9A6 in fiber cells leads to changes in transcription related to cell wall remodeling and thickening during xylem development. Together, the study demonstrated a new strategy of fiber cell wall modification that could have the potential to improve forest trees for better pulping and papermaking.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.