Fiber-specific expression of PdCel9A6 modifies the characteristics of wood fibers in Populus.

IF 3.5 2区 农林科学 Q1 FORESTRY
Jian Li, Xulei Guo, Xianwen Lu, Jiayan Sun, Yongcan Jin, Meng Li, Laigeng Li
{"title":"Fiber-specific expression of PdCel9A6 modifies the characteristics of wood fibers in Populus.","authors":"Jian Li, Xulei Guo, Xianwen Lu, Jiayan Sun, Yongcan Jin, Meng Li, Laigeng Li","doi":"10.1093/treephys/tpaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Wood fiber has been extensively used in the pulp and papermaking industries. The length of fiber cells is critical in determining the quality of paper. In our previous studies, we identified PdCel9A6, a gene encoding endo-1,4-β-glucanases (EGases) expressed in the developing xylem to affect cell wall formation. In this study, we modified the PdCel9A6 expression specifically in xylem fiber cells. The results showed that the fiber-specific upregulation of PdCel9A6 resulted in increased plant height and internode length. The transgenics significantly increased the fiber cell length in the wood xylem. In wood cell wall components, the transgenics showed a reduction of lignin while increasing cellulose. Furthermore, the characteristics of the paper processed from the transgenics showed a significant improvement in paper strength. Transcriptome studies showed that upregulation of PdCel9A6 in fiber cells leads to changes in transcription related to cell wall remodeling and thickening during xylem development. Together, the study demonstrated a new strategy of fiber cell wall modification that could have the potential to improve forest trees for better pulping and papermaking.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf051","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Wood fiber has been extensively used in the pulp and papermaking industries. The length of fiber cells is critical in determining the quality of paper. In our previous studies, we identified PdCel9A6, a gene encoding endo-1,4-β-glucanases (EGases) expressed in the developing xylem to affect cell wall formation. In this study, we modified the PdCel9A6 expression specifically in xylem fiber cells. The results showed that the fiber-specific upregulation of PdCel9A6 resulted in increased plant height and internode length. The transgenics significantly increased the fiber cell length in the wood xylem. In wood cell wall components, the transgenics showed a reduction of lignin while increasing cellulose. Furthermore, the characteristics of the paper processed from the transgenics showed a significant improvement in paper strength. Transcriptome studies showed that upregulation of PdCel9A6 in fiber cells leads to changes in transcription related to cell wall remodeling and thickening during xylem development. Together, the study demonstrated a new strategy of fiber cell wall modification that could have the potential to improve forest trees for better pulping and papermaking.

PdCel9A6的纤维特异性表达改变了杨树木材纤维的特性。
木纤维在纸浆和造纸工业中得到了广泛的应用。纤维细胞的长度是决定纸张质量的关键。在我们之前的研究中,我们发现了PdCel9A6,一个编码内切-1,4-β-葡聚糖酶(EGases)的基因,在发育中的木质部表达,影响细胞壁的形成。在本研究中,我们特异性地修饰了PdCel9A6在木质部纤维细胞中的表达。结果表明,PdCel9A6基因的特异性上调导致植株高度和节间长度增加。转基因显著增加了木材木质部的纤维细胞长度。在木材细胞壁成分中,转基因表现为木质素减少而纤维素增加。此外,经过转基因处理的纸张的特性显示出纸张强度的显著提高。转录组研究表明,纤维细胞中PdCel9A6的上调导致木质部发育过程中与细胞壁重塑和增厚相关的转录变化。总之,这项研究展示了一种纤维细胞壁修饰的新策略,它有可能改善森林树木的制浆和造纸性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信