Transcriptomic analysis of wrinkled leaf development of Tai-cai (Brassica rapa var. tai-tsai) and its synthetic allotetraploid via RNA and miRNA sequencing.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xinli Zhang, Wen Zheng, Zhiyu Zhu, Xiaocan Guo, Jinbao Hu, Li'ai Xu, Huihui Fang, Yunshuai Huang, Zhengyan Ling, Zhujun Zhu, Yunxiang Zang, Jianguo Wu
{"title":"Transcriptomic analysis of wrinkled leaf development of Tai-cai (Brassica rapa var. tai-tsai) and its synthetic allotetraploid via RNA and miRNA sequencing.","authors":"Xinli Zhang, Wen Zheng, Zhiyu Zhu, Xiaocan Guo, Jinbao Hu, Li'ai Xu, Huihui Fang, Yunshuai Huang, Zhengyan Ling, Zhujun Zhu, Yunxiang Zang, Jianguo Wu","doi":"10.1007/s11103-025-01592-8","DOIUrl":null,"url":null,"abstract":"<p><p>The allotetraploid (AACC) was synthesized through wide hybridization between 'Mottle-leaf Tai-cai' (Brassica rapa var. tai-tsai Hort. AA) and 'Big Yellow Flower Chinese Kale' (B. oleracea var. alboglabra Bailey. CC) in earlier study, which owns a stronger wrinkled leaf and wave margin than Tai-cai. To analyze the structure and developmental mechanism of wrinkled leaf and wave edge, four leaf development stages were chosen for RNA-seq and their key stages for anatomical observation. As a result, the number of cell layers and compactness of AA and AACC were significantly increased in folded parts, and the enlargement of epidermal cells causes the leaf edge to curve inward. The gene expression bias of AACC showed no difference in the cotyledon stage, favored the A genome in the first leaf stage, however, favored the C genome in the third leaf and fifth leaf stages, showing an expression level advantage over the C genome parent. During the leaf development, the plant hormone signaling pathway were significantly enriched, PIN1 (BraC07g037600), AUX1 (BraC05g007870), AUX/IAA (BraC03g037630), and GH3 (BraC10g026970), which maintained high expression during the euphylla leaf stage of AA and AACC. And these genes performed different patterns in CC. In addition, the expression levels of miR319 and miR156 of AA were significantly higher than those of CC, and the expression levels of their target genes TCP and SPL were lower. These genes were jointly involved in the development of AA and AACC leaves and may be closely related to the formation of leaf folds and waves.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 3","pages":"66"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01592-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The allotetraploid (AACC) was synthesized through wide hybridization between 'Mottle-leaf Tai-cai' (Brassica rapa var. tai-tsai Hort. AA) and 'Big Yellow Flower Chinese Kale' (B. oleracea var. alboglabra Bailey. CC) in earlier study, which owns a stronger wrinkled leaf and wave margin than Tai-cai. To analyze the structure and developmental mechanism of wrinkled leaf and wave edge, four leaf development stages were chosen for RNA-seq and their key stages for anatomical observation. As a result, the number of cell layers and compactness of AA and AACC were significantly increased in folded parts, and the enlargement of epidermal cells causes the leaf edge to curve inward. The gene expression bias of AACC showed no difference in the cotyledon stage, favored the A genome in the first leaf stage, however, favored the C genome in the third leaf and fifth leaf stages, showing an expression level advantage over the C genome parent. During the leaf development, the plant hormone signaling pathway were significantly enriched, PIN1 (BraC07g037600), AUX1 (BraC05g007870), AUX/IAA (BraC03g037630), and GH3 (BraC10g026970), which maintained high expression during the euphylla leaf stage of AA and AACC. And these genes performed different patterns in CC. In addition, the expression levels of miR319 and miR156 of AA were significantly higher than those of CC, and the expression levels of their target genes TCP and SPL were lower. These genes were jointly involved in the development of AA and AACC leaves and may be closely related to the formation of leaf folds and waves.

通过RNA和miRNA测序分析太菜(Brassica rapa var. tai-tsai)皱叶发育及其合成异体四倍体的转录组学分析。
以油菜品种“苔菜”(Brassica rapa var. tai-tsai Hort)为材料,广泛杂交合成了同种异体四倍体(AACC)。AA)和“大黄花芥蓝”(B. oleracea var. alboglabra Bailey)。CC),比太菜有更强的皱叶和波缘。为了分析皱叶和波边的结构和发育机制,选取了4个叶片发育阶段进行rna测序,并对其关键阶段进行了解剖观察。结果表明,AA和AACC在折叠部位的细胞层数和密实度显著增加,表皮细胞的增大导致叶缘向内弯曲。AACC基因在子叶期的表达偏向性无显著差异,在叶片1期偏向A基因组,而在叶片3期和叶片5期偏向C基因组,在表达水平上优于C基因组亲本。在叶片发育过程中,植物激素信号通路PIN1 (BraC07g037600)、AUX1 (BraC05g007870)、AUX/IAA (BraC03g037630)和GH3 (BraC10g026970)显著富集,在AA和AACC的胡胡拉叶期保持高表达。此外,AA的miR319和miR156的表达量显著高于CC,而它们的靶基因TCP和SPL的表达量则较低。这些基因共同参与了AA和AACC叶片的发育,可能与叶片褶皱和波浪的形成密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信