Douglas C Sloan, Yini Liao, Forest Ray, Brian S Muntean
{"title":"The G protein modifier KCTD5 tunes the decoding of neuromodulatory signals necessary for motor function in striatal neurons.","authors":"Douglas C Sloan, Yini Liao, Forest Ray, Brian S Muntean","doi":"10.1371/journal.pbio.3003117","DOIUrl":null,"url":null,"abstract":"<p><p>G proteins (Gα and Gβγ subtypes) drive adenylyl cyclase type 5 (AC5) synthesis of cAMP in striatal neurons, which is essential for motor coordination. KCTD5 directly interacts with Gβγ to delimit signaling events, yet downstream impact of KCTD5 in striatal circuits is not known. Here, generation of a conditional Kctd5 knockout mouse identified that loss of striatal KCTD5 leads to a dystonic phenotype, coordination deficits, and skewed transitions between behavioral syllables. 2-photon imaging of a cAMP biosensor revealed electrically evoked dopaminergic responses were significantly augmented in the absence of KCTD5 in striatal circuits. cAMP sensitization was rescued in situ by expression of a Gβγ-scavenging nanobody and motor deficits were partially rescued in vivo by pharmacological antagonism of the indirect striatal cAMP pathway. Therefore, KCTD5 acts as a brake on cAMP signaling in striatal neurons important for tuning dopaminergic signaling and motor coordination.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 4","pages":"e3003117"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003117","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
G proteins (Gα and Gβγ subtypes) drive adenylyl cyclase type 5 (AC5) synthesis of cAMP in striatal neurons, which is essential for motor coordination. KCTD5 directly interacts with Gβγ to delimit signaling events, yet downstream impact of KCTD5 in striatal circuits is not known. Here, generation of a conditional Kctd5 knockout mouse identified that loss of striatal KCTD5 leads to a dystonic phenotype, coordination deficits, and skewed transitions between behavioral syllables. 2-photon imaging of a cAMP biosensor revealed electrically evoked dopaminergic responses were significantly augmented in the absence of KCTD5 in striatal circuits. cAMP sensitization was rescued in situ by expression of a Gβγ-scavenging nanobody and motor deficits were partially rescued in vivo by pharmacological antagonism of the indirect striatal cAMP pathway. Therefore, KCTD5 acts as a brake on cAMP signaling in striatal neurons important for tuning dopaminergic signaling and motor coordination.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.