The microcirculation, the blood-brain barrier, and the neurovascular unit in health and Alzheimer disease: The aberrant pericyte is a central player.

IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Pharmacological Reviews Pub Date : 2025-05-01 Epub Date: 2025-03-13 DOI:10.1016/j.pharmr.2025.100052
Yasmin Amy Divecha, Sanketh Rampes, Sabine Tromp, Sevda T Boyanova, Alice Fleckney, Mehmet Fidanboylu, Sarah Ann Thomas
{"title":"The microcirculation, the blood-brain barrier, and the neurovascular unit in health and Alzheimer disease: The aberrant pericyte is a central player.","authors":"Yasmin Amy Divecha, Sanketh Rampes, Sabine Tromp, Sevda T Boyanova, Alice Fleckney, Mehmet Fidanboylu, Sarah Ann Thomas","doi":"10.1016/j.pharmr.2025.100052","DOIUrl":null,"url":null,"abstract":"<p><p>High fidelity neuronal signaling is enabled by a stable local microenvironment. A high degree of homeostatic regulation of the brain microenvironment, and its separation from the variable and potentially neurotoxic contents of the blood, is brought about by the central nervous system barriers. Evidence from clinical and preclinical studies implicates brain microcirculation, cerebral hypoperfusion, blood-brain barrier dysfunction, and reduced amyloid clearance in Alzheimer pathophysiology. Studying this dysregulation is key to understanding Alzheimer disease (AD), identifying drug targets, developing treatment strategies, and improving prescribing to this vulnerable population. This review has 2 parts: part 1 describes the cerebral microcirculation, cerebral blood flow, extracellular fluid drainage, and the neurovascular unit components with an emphasis on the blood-brain barrier, and part 2 summarizes how each aspect is altered in AD. Discussing the neurovascular unit structures separately allows us to conclude that aberrant pericytes are an early contributor and central to understanding AD pathophysiology. Pericytes have multiple functions including maintenance of blood-brain barrier integrity and the control of capillary blood flow, capillary stalling, neurovascular coupling, intramural periarterial drainage, glia-lymphatic (glymphatic) drainage, and consequently amyloid and tau clearance. Pericytes are vasoactive, express cholinergic and adrenergic receptors, and exhibit apolipoprotein E isoform-specific transport pathways. Hypoperfusion in AD is linked to a pericyte-mediated response. Deficient endothelial cell-pericyte (PDGBB-PDGFRβ) signaling loops cause pericyte dysfunction, which contributes and even initiates AD degeneration. We conclude that pericytes are central to understanding AD pathophysiology, are an interesting therapeutic target in AD, and have an emerging role in regenerative therapy. SIGNIFICANCE STATEMENT: Dysregulation and dysfunction of the neurovascular unit and fluid circulation (including blood, cerebrospinal fluid, and interstitial fluid) occurs in Alzheimer disease. A central player is the aberrant pericyte. This has fundamental implications to understanding disease pathophysiology and the development of therapies.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100052"},"PeriodicalIF":19.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pharmr.2025.100052","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

High fidelity neuronal signaling is enabled by a stable local microenvironment. A high degree of homeostatic regulation of the brain microenvironment, and its separation from the variable and potentially neurotoxic contents of the blood, is brought about by the central nervous system barriers. Evidence from clinical and preclinical studies implicates brain microcirculation, cerebral hypoperfusion, blood-brain barrier dysfunction, and reduced amyloid clearance in Alzheimer pathophysiology. Studying this dysregulation is key to understanding Alzheimer disease (AD), identifying drug targets, developing treatment strategies, and improving prescribing to this vulnerable population. This review has 2 parts: part 1 describes the cerebral microcirculation, cerebral blood flow, extracellular fluid drainage, and the neurovascular unit components with an emphasis on the blood-brain barrier, and part 2 summarizes how each aspect is altered in AD. Discussing the neurovascular unit structures separately allows us to conclude that aberrant pericytes are an early contributor and central to understanding AD pathophysiology. Pericytes have multiple functions including maintenance of blood-brain barrier integrity and the control of capillary blood flow, capillary stalling, neurovascular coupling, intramural periarterial drainage, glia-lymphatic (glymphatic) drainage, and consequently amyloid and tau clearance. Pericytes are vasoactive, express cholinergic and adrenergic receptors, and exhibit apolipoprotein E isoform-specific transport pathways. Hypoperfusion in AD is linked to a pericyte-mediated response. Deficient endothelial cell-pericyte (PDGBB-PDGFRβ) signaling loops cause pericyte dysfunction, which contributes and even initiates AD degeneration. We conclude that pericytes are central to understanding AD pathophysiology, are an interesting therapeutic target in AD, and have an emerging role in regenerative therapy. SIGNIFICANCE STATEMENT: Dysregulation and dysfunction of the neurovascular unit and fluid circulation (including blood, cerebrospinal fluid, and interstitial fluid) occurs in Alzheimer disease. A central player is the aberrant pericyte. This has fundamental implications to understanding disease pathophysiology and the development of therapies.

微循环,血脑屏障,神经血管单位在健康和阿尔茨海默病:异常周细胞是一个核心球员。
高保真神经元信号是由稳定的局部微环境实现的。大脑微环境的高度稳态调节,以及它与血液中可变的和潜在的神经毒性内容物的分离,是由中枢神经系统屏障带来的。来自临床和临床前研究的证据表明,脑微循环、脑灌注不足、血脑屏障功能障碍和淀粉样蛋白清除减少与阿尔茨海默病病理生理有关。研究这种失调是了解阿尔茨海默病(AD)、确定药物靶点、制定治疗策略和改善对这一弱势群体的处方的关键。本综述分为两部分:第一部分介绍了脑微循环、脑血流、细胞外液引流和神经血管单元组成,重点介绍了血脑屏障,第二部分总结了AD中每个方面的变化。单独讨论神经血管单位结构可以使我们得出结论,异常周细胞是早期贡献者,也是理解AD病理生理的核心。周细胞具有多种功能,包括维持血脑屏障的完整性和控制毛细血管血流、毛细血管失速、神经血管耦合、壁内动脉周引流、胶质淋巴(淋巴)引流,以及淀粉样蛋白和tau蛋白的清除。周细胞具有血管活性,表达胆碱能和肾上腺素能受体,并表现出载脂蛋白E亚型特异性运输途径。阿尔茨海默病的灌注不足与周细胞介导的反应有关。内皮细胞-周细胞(PDGBB-PDGFRβ)信号回路缺陷导致周细胞功能障碍,从而导致甚至引发AD变性。我们得出结论,周细胞是理解阿尔茨海默病病理生理的核心,是阿尔茨海默病的一个有趣的治疗靶点,并且在再生治疗中具有新兴的作用。意义声明:阿尔茨海默病发生神经血管单位和液体循环(包括血液、脑脊液和间质液)的失调和功能障碍。中心细胞是异常的周细胞。这对理解疾病病理生理学和治疗方法的发展具有根本性的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacological Reviews
Pharmacological Reviews 医学-药学
CiteScore
34.70
自引率
0.50%
发文量
40
期刊介绍: Pharmacological Reviews is a highly popular and well-received journal that has a long and rich history of success. It was first published in 1949 and is currently published bimonthly online by the American Society for Pharmacology and Experimental Therapeutics. The journal is indexed or abstracted by various databases, including Biological Abstracts, BIOSIS Previews Database, Biosciences Information Service, Current Contents/Life Sciences, EMBASE/Excerpta Medica, Index Medicus, Index to Scientific Reviews, Medical Documentation Service, Reference Update, Research Alerts, Science Citation Index, and SciSearch. Pharmacological Reviews offers comprehensive reviews of new pharmacological fields and is able to stay up-to-date with published content. Overall, it is highly regarded by scholars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信