{"title":"TEX10: A Novel Drug Target and Potential Therapeutic Direction for Sleep Apnea Syndrome.","authors":"Zhitao Fan, Hui Su, Tong Qiao, Sunan Shi, Pengfei Shi, Anqi Zhang","doi":"10.2147/NSS.S499895","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sleep apnea syndrome (SAS) is a prevalent sleep disorder strongly associated with obesity, metabolic dysregulation, and cardiovascular diseases. While its underlying pathophysiological mechanisms remain incompletely understood, genetic factors likely play a pivotal role in SAS pathogenesis. This study investigates the causal relationships between potential drug target genes and SAS using multiple statistical approaches, aiming to provide novel insights for targeted therapeutic development.</p><p><strong>Methods: </strong>We conducted a comprehensive genetic analysis integrating multiple methodologies to investigate gene-SAS relationships. Using publicly available GWAS and eQTL databases, we performed Mendelian Randomization (MR) analysis with the inverse variance weighted (IVW) method, validated by weighted median and MR-Egger approaches. Summary-data-based MR (SMR) analysis, coupled with HEIDI testing, assessed direct gene expression-SAS associations while controlling for linkage disequilibrium (LD). Colocalization analysis evaluated the probability of shared causal variants between SNPs, gene expression, and SAS. Statistical significance was determined using Benjamini-Hochberg multiple testing correction (FDR < 0.05). Additionally, mediation analysis explored TEX10's influence on SAS through metabolic intermediates including BMI, waist circumference, and HDL cholesterol.</p><p><strong>Results: </strong>We identified 18 candidate drug target genes significantly associated with SAS, with MAPKAPK3, TNXB, MPHOSPH8, and TEX10 showing consistent associations across multiple analyses. TEX10, in particular, exhibited significant associations with SAS risk in blood, cerebral cortex, hippocampus, and basal ganglia (PP.H4 > 0.9). Mediation analysis suggested that TEX10 might influence SAS risk indirectly through BMI, waist circumference, and HDL cholesterol levels.</p><p><strong>Conclusion: </strong>Our study identified multiple potential therapeutic targets causally linked to SAS, with TEX10 emerging as a key candidate gene. These findings advance our understanding of SAS pathogenesis and offer promising directions for personalized diagnostics and targeted therapies.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"17 ","pages":"731-746"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S499895","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sleep apnea syndrome (SAS) is a prevalent sleep disorder strongly associated with obesity, metabolic dysregulation, and cardiovascular diseases. While its underlying pathophysiological mechanisms remain incompletely understood, genetic factors likely play a pivotal role in SAS pathogenesis. This study investigates the causal relationships between potential drug target genes and SAS using multiple statistical approaches, aiming to provide novel insights for targeted therapeutic development.
Methods: We conducted a comprehensive genetic analysis integrating multiple methodologies to investigate gene-SAS relationships. Using publicly available GWAS and eQTL databases, we performed Mendelian Randomization (MR) analysis with the inverse variance weighted (IVW) method, validated by weighted median and MR-Egger approaches. Summary-data-based MR (SMR) analysis, coupled with HEIDI testing, assessed direct gene expression-SAS associations while controlling for linkage disequilibrium (LD). Colocalization analysis evaluated the probability of shared causal variants between SNPs, gene expression, and SAS. Statistical significance was determined using Benjamini-Hochberg multiple testing correction (FDR < 0.05). Additionally, mediation analysis explored TEX10's influence on SAS through metabolic intermediates including BMI, waist circumference, and HDL cholesterol.
Results: We identified 18 candidate drug target genes significantly associated with SAS, with MAPKAPK3, TNXB, MPHOSPH8, and TEX10 showing consistent associations across multiple analyses. TEX10, in particular, exhibited significant associations with SAS risk in blood, cerebral cortex, hippocampus, and basal ganglia (PP.H4 > 0.9). Mediation analysis suggested that TEX10 might influence SAS risk indirectly through BMI, waist circumference, and HDL cholesterol levels.
Conclusion: Our study identified multiple potential therapeutic targets causally linked to SAS, with TEX10 emerging as a key candidate gene. These findings advance our understanding of SAS pathogenesis and offer promising directions for personalized diagnostics and targeted therapies.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.