Comprehensive computational analysis of deleterious nsSNPs in PTEN gene for structural and functional insights.

IF 1.5 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Divyanshi Sharma, Harasees Singh, Aryan Arya, Himanshi Choudhary, Pragya Guleria, Sandeep Saini, Chander Jyoti Thakur
{"title":"Comprehensive computational analysis of deleterious nsSNPs in <i>PTEN</i> gene for structural and functional insights.","authors":"Divyanshi Sharma, Harasees Singh, Aryan Arya, Himanshi Choudhary, Pragya Guleria, Sandeep Saini, Chander Jyoti Thakur","doi":"10.22099/mbrc.2025.52148.2092","DOIUrl":null,"url":null,"abstract":"<p><p>Single nucleotide polymorphisms (SNPs) are pivotal in understanding the genetic basis of complex disorders. Among them, nonsynonymous SNPs (nsSNPs) that alter amino acid sequences can significantly impact protein structure and function. This study focuses on analyzing deleterious nsSNPs in the tumor suppressor gene <i>PTEN</i> (Phosphatase and TENsin Homolog), which plays a central role in regulating the PI3K/Akt signaling pathway and tumorigenesis. Out of 43,855 SNPs in <i>PTEN</i>, 17 deleterious nsSNPs were identified using six computational tools. Protein stability analysis revealed that 15 variants reduce stability, potentially leading to functional impairment. Structural evaluations using HOPE and ConSurf classified mutations into buried structural residues disrupting protein integrity and exposed functional residues affecting molecular interactions. STRING database analysis highlighted PTEN as a central node in an intricate protein network, with deleterious mutations impairing critical interactions with partners such as PIK3CA, AKT1, and TP53. Secondary structure analysis revealed distinct structural deviations, particularly for G129E, which exhibited the most pronounced destabilization. Molecular dynamics simulations confirmed stability variations across mutants, with G129E exhibiting greater instability. This comprehensive analysis enhances understanding of <i>PTEN</i> nsSNP impacts, offering insights for therapeutic interventions and future experimental validation.</p>","PeriodicalId":19025,"journal":{"name":"Molecular Biology Research Communications","volume":"14 3","pages":"219-239"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22099/mbrc.2025.52148.2092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single nucleotide polymorphisms (SNPs) are pivotal in understanding the genetic basis of complex disorders. Among them, nonsynonymous SNPs (nsSNPs) that alter amino acid sequences can significantly impact protein structure and function. This study focuses on analyzing deleterious nsSNPs in the tumor suppressor gene PTEN (Phosphatase and TENsin Homolog), which plays a central role in regulating the PI3K/Akt signaling pathway and tumorigenesis. Out of 43,855 SNPs in PTEN, 17 deleterious nsSNPs were identified using six computational tools. Protein stability analysis revealed that 15 variants reduce stability, potentially leading to functional impairment. Structural evaluations using HOPE and ConSurf classified mutations into buried structural residues disrupting protein integrity and exposed functional residues affecting molecular interactions. STRING database analysis highlighted PTEN as a central node in an intricate protein network, with deleterious mutations impairing critical interactions with partners such as PIK3CA, AKT1, and TP53. Secondary structure analysis revealed distinct structural deviations, particularly for G129E, which exhibited the most pronounced destabilization. Molecular dynamics simulations confirmed stability variations across mutants, with G129E exhibiting greater instability. This comprehensive analysis enhances understanding of PTEN nsSNP impacts, offering insights for therapeutic interventions and future experimental validation.

PTEN基因中有害非单核苷酸多态性的综合计算分析,以获得结构和功能上的见解。
单核苷酸多态性(SNPs)是理解复杂疾病遗传基础的关键。其中,改变氨基酸序列的非同义snp (non - synonymous SNPs, nsSNPs)可以显著影响蛋白质的结构和功能。本研究重点分析肿瘤抑制基因PTEN (Phosphatase and TENsin Homolog)中有害的非单核苷酸多态性,PTEN在调节PI3K/Akt信号通路和肿瘤发生中起核心作用。在PTEN的43,855个snp中,使用六种计算工具确定了17个有害的nssnp。蛋白质稳定性分析显示,15个变异降低了稳定性,可能导致功能损伤。使用HOPE和ConSurf进行结构评估,将突变分为破坏蛋白质完整性的埋藏结构残基和影响分子相互作用的暴露功能残基。STRING数据库分析强调PTEN是复杂蛋白质网络的中心节点,其有害突变会损害与PIK3CA、AKT1和TP53等伙伴蛋白的关键相互作用。二级结构分析显示出明显的结构偏差,特别是G129E,表现出最明显的失稳。分子动力学模拟证实了突变体之间的稳定性差异,其中G129E表现出更大的不稳定性。这项综合分析增强了对PTEN nsSNP影响的理解,为治疗干预和未来的实验验证提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology Research Communications
Molecular Biology Research Communications BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
3.00
自引率
0.00%
发文量
12
期刊介绍: “Molecular Biology Research Communications” (MBRC) is an international journal of Molecular Biology. It is published quarterly by Shiraz University (Iran). The MBRC is a fully peer-reviewed journal. The journal welcomes submission of Original articles, Short communications, Invited review articles, and Letters to the Editor which meets the general criteria of significance and scientific excellence in all fields of “Molecular Biology”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信