{"title":"Synergistic Antifungal Activity of Pentamidine and Auranofin Against Multidrug-Resistant Candida auris.","authors":"Yasmim Isabel Retore, Fabíola Lucini, Simone Simionatto, Luana Rossato","doi":"10.1007/s11046-025-00948-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Candida auris is a significant clinical concern due to its ability to cause outbreaks in healthcare settings and its common resistance to current treatments. This highlights the need for alternative therapies. Drug repurposing offers a promising approach, and the combination of pentamidine (antiprotozoal) and auranofin (anti-rheumatic) has shown potential antifungal activity against Candida species, including C. auris. This study aimed to evaluate the antifungal activity of pentamidine and auranofin, both individually and in combination, against C. auris.</p><p><strong>Methods: </strong>Minimum Inhibitory Concentrations (MICs) were determined following CLSI guidelines, and drug interactions were assessed using the checkerboard microdilution method. Additional evaluations included growth inhibition, antibiofilm activity, cell damage, sorbitol protection, and efflux pump inhibition. Nucleotide leakage and cell membrane permeability were analyzed using biochemical assays. In vivo efficacy was tested using a Tenebrio molitor larvae model infected with C. auris.</p><p><strong>Results: </strong>The MICs of pentamidine against C. auris ranged from 16 to 128 μg/mL, showing fungicidal activity. The combination with auranofin had a synergistic effect (FICI: 0.37) and exhibited a fungistatic effect in growth inhibition assays. Auranofin was most effective at inhibiting biofilm formation. Pentamidine impaired mitochondrial function, leading to cellular respiration issues and membrane damage. Efflux pump assays indicated activation by both drugs, potentially influencing resistance. In vivo tests showed both drugs significantly improved survival rates in infected larvae compared to fluconazole.</p><p><strong>Conclusion: </strong>In conclusion, pentamidine and auranofin, either individually or in combination, are promising treatments for C. auris and warrant further research into optimal dosing and combination strategies.</p>","PeriodicalId":19017,"journal":{"name":"Mycopathologia","volume":"190 3","pages":"41"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycopathologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11046-025-00948-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Candida auris is a significant clinical concern due to its ability to cause outbreaks in healthcare settings and its common resistance to current treatments. This highlights the need for alternative therapies. Drug repurposing offers a promising approach, and the combination of pentamidine (antiprotozoal) and auranofin (anti-rheumatic) has shown potential antifungal activity against Candida species, including C. auris. This study aimed to evaluate the antifungal activity of pentamidine and auranofin, both individually and in combination, against C. auris.
Methods: Minimum Inhibitory Concentrations (MICs) were determined following CLSI guidelines, and drug interactions were assessed using the checkerboard microdilution method. Additional evaluations included growth inhibition, antibiofilm activity, cell damage, sorbitol protection, and efflux pump inhibition. Nucleotide leakage and cell membrane permeability were analyzed using biochemical assays. In vivo efficacy was tested using a Tenebrio molitor larvae model infected with C. auris.
Results: The MICs of pentamidine against C. auris ranged from 16 to 128 μg/mL, showing fungicidal activity. The combination with auranofin had a synergistic effect (FICI: 0.37) and exhibited a fungistatic effect in growth inhibition assays. Auranofin was most effective at inhibiting biofilm formation. Pentamidine impaired mitochondrial function, leading to cellular respiration issues and membrane damage. Efflux pump assays indicated activation by both drugs, potentially influencing resistance. In vivo tests showed both drugs significantly improved survival rates in infected larvae compared to fluconazole.
Conclusion: In conclusion, pentamidine and auranofin, either individually or in combination, are promising treatments for C. auris and warrant further research into optimal dosing and combination strategies.
期刊介绍:
Mycopathologia is an official journal of the International Union of Microbiological Societies (IUMS). Mycopathologia was founded in 1938 with the mission to ‘diffuse the understanding of fungal diseases in man and animals among mycologists’. Many of the milestones discoveries in the field of medical mycology have been communicated through the pages of this journal. Mycopathologia covers a diverse, interdisciplinary range of topics that is unique in breadth and depth. The journal publishes peer-reviewed, original articles highlighting important developments concerning medically important fungi and fungal diseases. The journal highlights important developments in fungal systematics and taxonomy, laboratory diagnosis of fungal infections, antifungal drugs, clinical presentation and treatment, and epidemiology of fungal diseases globally. Timely opinion articles, mini-reviews, and other communications are usually invited at the discretion of the editorial board. Unique case reports highlighting unprecedented progress in the diagnosis and treatment of fungal infections, are published in every issue of the journal. MycopathologiaIMAGE is another regular feature for a brief clinical report of potential interest to a mixed audience of physicians and laboratory scientists. MycopathologiaGENOME is designed for the rapid publication of new genomes of human and animal pathogenic fungi using a checklist-based, standardized format.