Xiaohui Liu, Peihong Wang, Sai Wang, Weixue Liao, Mingyan Ouyang, Sisi Lin, Rongpeng Lin, Panagiotis F Sarris, Vasiliki Michalopoulou, Xurui Feng, Zinan Zhang, Zhengyin Xu, Gongyou Chen, Bo Zhu
{"title":"The circular RNA circANK suppresses rice resistance to bacterial blight by inhibiting microRNA398b-mediated defense.","authors":"Xiaohui Liu, Peihong Wang, Sai Wang, Weixue Liao, Mingyan Ouyang, Sisi Lin, Rongpeng Lin, Panagiotis F Sarris, Vasiliki Michalopoulou, Xurui Feng, Zinan Zhang, Zhengyin Xu, Gongyou Chen, Bo Zhu","doi":"10.1093/plcell/koaf082","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are prevalent in eukaryotic cells and have been linked to disease progressions. Their unique circular structure and stability make them potential biomarkers and therapeutic targets. Compared to animal models, plant circRNA research is still in its infancy. The lack of effective tools to specifically knock down circRNAs without affecting host gene expression has slowed the progress of plant circRNA research. Here, we have developed a CRISPR-Cas13d tool that can specifically knock down circRNAs in plant systems, successfully achieving the targeted knockdown of circRNAs in rice (Oryza sativa). We further focused on Os-circANK (a circRNA derived from Ankyrin repeat-containing protein), a circRNA differentially expressed in rice upon pathogen infection. Physiological and biochemical experiments revealed that Os-circANK functions as a sponge for miR398b, suppressing the cleavage of Cu/Zn-Superoxidase Dismutase (CSD)1/CSD2/Copper Chaperone for Superoxide Dismutase (CCSD)/Superoxidase Dismutase (SODX) through ceRNA (competing endogenous RNA), leading to reduced ROS levels following Xanthomonas oryzae pv. oryzae (Xoo) infection and a negative regulation of rice resistance to bacterial blight. Our findings indicate Os-circANK inhibits rice resistance to bacterial blight via the microRNA398b(miR398b)/CSD/SOD pathway.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf082","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) are prevalent in eukaryotic cells and have been linked to disease progressions. Their unique circular structure and stability make them potential biomarkers and therapeutic targets. Compared to animal models, plant circRNA research is still in its infancy. The lack of effective tools to specifically knock down circRNAs without affecting host gene expression has slowed the progress of plant circRNA research. Here, we have developed a CRISPR-Cas13d tool that can specifically knock down circRNAs in plant systems, successfully achieving the targeted knockdown of circRNAs in rice (Oryza sativa). We further focused on Os-circANK (a circRNA derived from Ankyrin repeat-containing protein), a circRNA differentially expressed in rice upon pathogen infection. Physiological and biochemical experiments revealed that Os-circANK functions as a sponge for miR398b, suppressing the cleavage of Cu/Zn-Superoxidase Dismutase (CSD)1/CSD2/Copper Chaperone for Superoxide Dismutase (CCSD)/Superoxidase Dismutase (SODX) through ceRNA (competing endogenous RNA), leading to reduced ROS levels following Xanthomonas oryzae pv. oryzae (Xoo) infection and a negative regulation of rice resistance to bacterial blight. Our findings indicate Os-circANK inhibits rice resistance to bacterial blight via the microRNA398b(miR398b)/CSD/SOD pathway.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.