Two paths to one destination: altered low-frequency oscillations of cerebral perfusion and oxygenation but not oxygen metabolism in mild cognitive impairment.
Leena N Shoemaker, Farah Kamar, Daniel Milej, Laura Fitzgibbon-Collins, Rasa Eskandari, Jaspreet Bhangu, J Kevin Shoemaker, Keith St Lawrence
{"title":"Two paths to one destination: altered low-frequency oscillations of cerebral perfusion and oxygenation but not oxygen metabolism in mild cognitive impairment.","authors":"Leena N Shoemaker, Farah Kamar, Daniel Milej, Laura Fitzgibbon-Collins, Rasa Eskandari, Jaspreet Bhangu, J Kevin Shoemaker, Keith St Lawrence","doi":"10.1152/japplphysiol.00884.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrovascular dysfunction, a risk factor for dementia, is challenging to detect in mild cognitive impairment (MCI). Herein, we used novel, light-based technology to investigate low-frequency hemodynamic oscillations (LFOs; 0.02-0.16 Hz) in cerebral perfusion, oxygenation, and relative metabolic rate of oxygen (rCMRO<sub>2</sub>) in MCI (<i>n</i> = 13; 74 ± 6 yr) and cognitively intact controls (<i>n</i> = 10; 69 ± 6 yr). Relative cerebral microvascular perfusion and tissue oxygenation changes were recorded using a depth-enhanced optical monitoring system. Continuous wavelet transforms were used to compare average LFO power between groups (α = 0.025). Compared with controls, MCI had lower LFO power in microvascular perfusion, greater power in oxygenation (<i>P</i> ≤ 0.02), and no statistical difference in oscillatory power for rCMRO<sub>2</sub>. Similar rCMRO<sub>2</sub> but opposing changes in oscillatory power for cerebral perfusion and oxygenation associated with MCI suggest an adaptation to maintain energy production.<b>NEW & NOTEWORTHY</b> We used a novel, depth-enhanced optical monitoring system to investigate low-frequency hemodynamic oscillations (0.02-0.16 Hz) in cerebral microvascular perfusion, oxygenation, and relative metabolic rate of oxygen in patients with MCI and cognitively intact controls. Our findings indicate cerebrovascular dysfunction in MCI, wherein the regulation of oxygenation is altered to maintain metabolism in an environment with attenuated vascular control. These findings highlight the potential of using optical technology to assess cerebrovascular function in MCI.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"1361-1371"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00884.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebrovascular dysfunction, a risk factor for dementia, is challenging to detect in mild cognitive impairment (MCI). Herein, we used novel, light-based technology to investigate low-frequency hemodynamic oscillations (LFOs; 0.02-0.16 Hz) in cerebral perfusion, oxygenation, and relative metabolic rate of oxygen (rCMRO2) in MCI (n = 13; 74 ± 6 yr) and cognitively intact controls (n = 10; 69 ± 6 yr). Relative cerebral microvascular perfusion and tissue oxygenation changes were recorded using a depth-enhanced optical monitoring system. Continuous wavelet transforms were used to compare average LFO power between groups (α = 0.025). Compared with controls, MCI had lower LFO power in microvascular perfusion, greater power in oxygenation (P ≤ 0.02), and no statistical difference in oscillatory power for rCMRO2. Similar rCMRO2 but opposing changes in oscillatory power for cerebral perfusion and oxygenation associated with MCI suggest an adaptation to maintain energy production.NEW & NOTEWORTHY We used a novel, depth-enhanced optical monitoring system to investigate low-frequency hemodynamic oscillations (0.02-0.16 Hz) in cerebral microvascular perfusion, oxygenation, and relative metabolic rate of oxygen in patients with MCI and cognitively intact controls. Our findings indicate cerebrovascular dysfunction in MCI, wherein the regulation of oxygenation is altered to maintain metabolism in an environment with attenuated vascular control. These findings highlight the potential of using optical technology to assess cerebrovascular function in MCI.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.