Artificial intelligence predicts multiclass molecular signatures and subtypes directly from breast cancer histology: a multicenter retrospective study.

IF 12.5 2区 医学 Q1 SURGERY
Xiangyang Zhang, Yang Chen, Changjing Cai, Yifeng Wang, Jun Tan, Zijie Fang, Le Wei, Zhuchen Shao, Liwen Wang, Tiezheng Qi, Yihan Liu, Zhaohui Jiang, Yin Li, Ying Han, Tibera Kagemulo Rugambwa, Shan Zeng, Haoqian Wang, Hong Shen, Yongbing Zhang
{"title":"Artificial intelligence predicts multiclass molecular signatures and subtypes directly from breast cancer histology: a multicenter retrospective study.","authors":"Xiangyang Zhang, Yang Chen, Changjing Cai, Yifeng Wang, Jun Tan, Zijie Fang, Le Wei, Zhuchen Shao, Liwen Wang, Tiezheng Qi, Yihan Liu, Zhaohui Jiang, Yin Li, Ying Han, Tibera Kagemulo Rugambwa, Shan Zeng, Haoqian Wang, Hong Shen, Yongbing Zhang","doi":"10.1097/JS9.0000000000002220","DOIUrl":null,"url":null,"abstract":"<p><p>Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.</p>","PeriodicalId":14401,"journal":{"name":"International journal of surgery","volume":"111 4","pages":"3109-3114"},"PeriodicalIF":12.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JS9.0000000000002220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

人工智能直接从乳腺癌组织学预测多类分子特征和亚型:一项多中心回顾性研究。
检测乳腺癌的生物标志物会产生额外的费用和组织负担。我们提出了一种基于深度学习的算法(BBMIL),直接从苏木精和伊红染色的组织病理学图像中预测经典生物标志物、免疫治疗相关基因特征和预后相关亚型。在经典生物标志物、免疫治疗相关基因特征和亚型预测方面,BBMIL在比较算法中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.70
自引率
3.30%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The International Journal of Surgery (IJS) has a broad scope, encompassing all surgical specialties. Its primary objective is to facilitate the exchange of crucial ideas and lines of thought between and across these specialties.By doing so, the journal aims to counter the growing trend of increasing sub-specialization, which can result in "tunnel-vision" and the isolation of significant surgical advancements within specific specialties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信