Improved inverse design method based on AVM for long-distance dielectric laser accelerators.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-04-07 DOI:10.1364/OE.558058
ZiYang Liu, QianQian Wang, ChenYi Yang, Ke Chen, DanDan Li, BingHeng Lu, PengXiang Yang, YaDong Yang
{"title":"Improved inverse design method based on AVM for long-distance dielectric laser accelerators.","authors":"ZiYang Liu, QianQian Wang, ChenYi Yang, Ke Chen, DanDan Li, BingHeng Lu, PengXiang Yang, YaDong Yang","doi":"10.1364/OE.558058","DOIUrl":null,"url":null,"abstract":"<p><p>The dielectric laser accelerator (DLA) is an innovative on-chip particle accelerator that employs a periodic dielectric structure to modulate a laser beam, generating a longitudinal accelerating field to propel particles. Leveraging the high laser-induced damage threshold of dielectric materials, DLAs can achieve significantly higher acceleration gradients compared to traditional accelerators. Current inverse design approaches for DLAs, based on the adjoint variable method (AVM), overlook the impact of changes in electron velocity, which can result in dephasing between electrons and the accelerating field over long distances. To address this limitation, we propose an improved inverse design method that incorporates electron velocity variations into the objective function, specifically tailored for long-distance acceleration structures. Using an incident electric field amplitude of 1.2 GV/m, we designed a 20 µm DLA capable of accelerating 26.6 keV electrons with an average acceleration gradient of 347 MeV/m. Our method ensures sustained electron acceleration across the entire structure, surpassing the energy gain limits imposed by the original approach. Furthermore, the optimal initial electron energy in this design closely aligns with the target value (26.6 keV), demonstrating that the dephasing issue has been effectively resolved. This advancement paves the way for more efficient and robust on-chip particle acceleration.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 7","pages":"14737-14749"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.558058","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dielectric laser accelerator (DLA) is an innovative on-chip particle accelerator that employs a periodic dielectric structure to modulate a laser beam, generating a longitudinal accelerating field to propel particles. Leveraging the high laser-induced damage threshold of dielectric materials, DLAs can achieve significantly higher acceleration gradients compared to traditional accelerators. Current inverse design approaches for DLAs, based on the adjoint variable method (AVM), overlook the impact of changes in electron velocity, which can result in dephasing between electrons and the accelerating field over long distances. To address this limitation, we propose an improved inverse design method that incorporates electron velocity variations into the objective function, specifically tailored for long-distance acceleration structures. Using an incident electric field amplitude of 1.2 GV/m, we designed a 20 µm DLA capable of accelerating 26.6 keV electrons with an average acceleration gradient of 347 MeV/m. Our method ensures sustained electron acceleration across the entire structure, surpassing the energy gain limits imposed by the original approach. Furthermore, the optimal initial electron energy in this design closely aligns with the target value (26.6 keV), demonstrating that the dephasing issue has been effectively resolved. This advancement paves the way for more efficient and robust on-chip particle acceleration.

基于AVM的远距离介质激光加速器改进反设计方法。
介质激光加速器(DLA)是一种创新的片上粒子加速器,它利用周期性介质结构调制激光束,产生纵向加速场来推动粒子。利用介电材料的高激光损伤阈值,与传统加速器相比,DLAs可以实现更高的加速度梯度。目前基于伴随变量法(AVM)的DLAs反设计方法忽略了电子速度变化的影响,电子速度变化可能导致电子和加速场之间在长距离上失相。为了解决这一限制,我们提出了一种改进的反设计方法,将电子速度变化纳入目标函数,专门为长距离加速度结构量身定制。在入射电场振幅为1.2 GV/m的条件下,我们设计了一个20µm的DLA,能够加速26.6 keV的电子,平均加速梯度为347 MeV/m。我们的方法确保了整个结构中持续的电子加速,超过了原始方法所施加的能量增益限制。此外,该设计的最佳初始电子能量与目标值(26.6 keV)非常接近,表明消相问题得到了有效解决。这一进步为更高效、更稳健的片上粒子加速铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信