Macroepidemiological trends of Influenza A virus detection through reverse transcription real-time polymerase chain reaction (RT-rtPCR) in porcine samples in the United States over the last 20 years.

IF 2.6 2区 农林科学 Q1 VETERINARY SCIENCES
Frontiers in Veterinary Science Pub Date : 2025-04-24 eCollection Date: 2025-01-01 DOI:10.3389/fvets.2025.1572237
Daniel C A Moraes, Guilherme A Cezar, Edison S Magalhães, Rafael R Nicolino, Kinath Rupasinghe, Srijita Chandra, Gustavo S Silva, Marcelo N Almeida, Bret Crim, Eric R Burrough, Phillip C Gauger, Darin Madson, Joseph Thomas, Michael A Zeller, Rodger Main, Mary Thurn, Paulo Lages, Cezar A Corzo, Mattew Sturos, Hemant Naikare, Rob McGaughey, Franco Matias Ferreyra, Jamie Retallick, Jordan Gebhardt, Sara McReynolds, Jon Greseth, Darren Kersey, Travis Clement, Angela Pillatzki, Jane Christopher-Hennings, Beth S Thompson, Melanie Prarat, Dennis Summers, Craig Bowen, Joseph Boyle, Kenitra Hendrix, James Lyons, Kelli Werling, Andreia G Arruda, Mark Schwartz, Paul Yeske, Deborah Murray, Brigitte Mason, Peter Schneider, Samuel Copeland, Luc Dufresne, Daniel Boykin, Corrine Fruge, William Hollis, Rebecca C Robbins, Thomas Petznick, Kurt Kuecker, Lauren Glowzenski, Megan Niederwerder, Daniel C L Linhares, Giovani Trevisan
{"title":"Macroepidemiological trends of Influenza A virus detection through reverse transcription real-time polymerase chain reaction (RT-rtPCR) in porcine samples in the United States over the last 20 years.","authors":"Daniel C A Moraes, Guilherme A Cezar, Edison S Magalhães, Rafael R Nicolino, Kinath Rupasinghe, Srijita Chandra, Gustavo S Silva, Marcelo N Almeida, Bret Crim, Eric R Burrough, Phillip C Gauger, Darin Madson, Joseph Thomas, Michael A Zeller, Rodger Main, Mary Thurn, Paulo Lages, Cezar A Corzo, Mattew Sturos, Hemant Naikare, Rob McGaughey, Franco Matias Ferreyra, Jamie Retallick, Jordan Gebhardt, Sara McReynolds, Jon Greseth, Darren Kersey, Travis Clement, Angela Pillatzki, Jane Christopher-Hennings, Beth S Thompson, Melanie Prarat, Dennis Summers, Craig Bowen, Joseph Boyle, Kenitra Hendrix, James Lyons, Kelli Werling, Andreia G Arruda, Mark Schwartz, Paul Yeske, Deborah Murray, Brigitte Mason, Peter Schneider, Samuel Copeland, Luc Dufresne, Daniel Boykin, Corrine Fruge, William Hollis, Rebecca C Robbins, Thomas Petznick, Kurt Kuecker, Lauren Glowzenski, Megan Niederwerder, Daniel C L Linhares, Giovani Trevisan","doi":"10.3389/fvets.2025.1572237","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza A virus (IAV) in swine is a major respiratory pathogen with global significance. This study aimed to characterize the macroepidemiological patterns of IAV detection using reverse transcription real-time polymerase chain reaction (RT-rtPCR) assays, including subtype identification, in samples submitted between January 2004 and December 2024 to veterinary diagnostic laboratories (VDLs) participating in the Swine Disease Reporting System (SDRS). A secondary objective was establishing an IAV monitoring capability to inform stakeholders of weekly changes in IAV detection patterns. Of the 372,659 samples submitted, 31% tested positive for IAV RNA via RT-rtPCR. The most frequent sample types were oral fluids (44.1%) and lung tissue (38.7%). Submissions from the wean-to-market category had a higher positivity rate (34.4%) than those from the adult/sow farm category (26.9%). IAV detection followed a seasonal pattern, with peaks in spring and fall and lower positivity rates in summer. Of the total of 118,490 samples tested for IAV subtyping using RT-rtPCR, the most frequently detected subtypes were H1N1 (33.1%), H3N2 (25.5%), H1N2 (24.3%), H3N1 (0.2%), mixed subtypes (5.4%), and partial subtype detection (11.5%). Mixed IAV subtypes were detected in individual samples-including lung tissue, nasal swabs, and bronchoalveolar lavage-indicating co-infection with two or more IAV strains. For IAV forecasting, a combined model using dynamic regression and a neural network outperformed individual models in 2023, achieving the lowest root mean square error (RMSE) and an improved overall skill score. This study highlights the importance of using laboratory submission data for IAV surveillance and macroepidemiological analysis. The findings provide valuable insights into IAV dynamics and highlight the need for standardized monitoring systems in VDLs to enhance understanding of IAV in swine populations across the United States.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1572237"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1572237","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza A virus (IAV) in swine is a major respiratory pathogen with global significance. This study aimed to characterize the macroepidemiological patterns of IAV detection using reverse transcription real-time polymerase chain reaction (RT-rtPCR) assays, including subtype identification, in samples submitted between January 2004 and December 2024 to veterinary diagnostic laboratories (VDLs) participating in the Swine Disease Reporting System (SDRS). A secondary objective was establishing an IAV monitoring capability to inform stakeholders of weekly changes in IAV detection patterns. Of the 372,659 samples submitted, 31% tested positive for IAV RNA via RT-rtPCR. The most frequent sample types were oral fluids (44.1%) and lung tissue (38.7%). Submissions from the wean-to-market category had a higher positivity rate (34.4%) than those from the adult/sow farm category (26.9%). IAV detection followed a seasonal pattern, with peaks in spring and fall and lower positivity rates in summer. Of the total of 118,490 samples tested for IAV subtyping using RT-rtPCR, the most frequently detected subtypes were H1N1 (33.1%), H3N2 (25.5%), H1N2 (24.3%), H3N1 (0.2%), mixed subtypes (5.4%), and partial subtype detection (11.5%). Mixed IAV subtypes were detected in individual samples-including lung tissue, nasal swabs, and bronchoalveolar lavage-indicating co-infection with two or more IAV strains. For IAV forecasting, a combined model using dynamic regression and a neural network outperformed individual models in 2023, achieving the lowest root mean square error (RMSE) and an improved overall skill score. This study highlights the importance of using laboratory submission data for IAV surveillance and macroepidemiological analysis. The findings provide valuable insights into IAV dynamics and highlight the need for standardized monitoring systems in VDLs to enhance understanding of IAV in swine populations across the United States.

反转录实时聚合酶链反应(rt -rt - pcr)在美国猪样本中检测甲型流感病毒的大流行病学趋势
甲型流感病毒(IAV)是一种具有全球意义的主要呼吸道病原体。本研究旨在利用反转录实时聚合酶链反应(rt -rt - pcr)分析2004年1月至2024年12月期间提交给参与猪瘟报告系统(SDRS)的兽医诊断实验室(vdl)的样本,表征IAV检测的宏观流行病学模式,包括亚型鉴定。第二个目标是建立内源性病毒监测能力,向利益攸关方通报内源性病毒检测模式的每周变化。在提交的372,659份样本中,31%的样本通过RT-rtPCR检测出IAV RNA阳性。最常见的样本类型是口腔液体(44.1%)和肺组织(38.7%)。从断奶到市场类别的提交的阳性率(34.4%)高于成人/母猪农场类别的提交的阳性率(26.9%)。IAV检测呈季节性模式,春季和秋季为高峰,夏季阳性率较低。在使用RT-rtPCR检测IAV亚型的118490份样本中,检出最多的亚型为H1N1(33.1%)、H3N2(25.5%)、H1N2(24.3%)、H3N1(0.2%)、混合亚型(5.4%)和部分亚型(11.5%)。在个体样本(包括肺组织、鼻拭子和支气管肺泡灌洗液)中检测到混合IAV亚型,表明同时感染了两种或两种以上的IAV菌株。对于IAV预测,使用动态回归和神经网络的组合模型在2023年的表现优于单个模型,实现了最低的均方根误差(RMSE),并提高了整体技能得分。这项研究强调了利用实验室提交的数据进行禽流感监测和宏观流行病学分析的重要性。这些发现为IAV动力学提供了有价值的见解,并强调了在vdl中建立标准化监测系统的必要性,以加强对美国猪群中IAV的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Veterinary Science
Frontiers in Veterinary Science Veterinary-General Veterinary
CiteScore
4.80
自引率
9.40%
发文量
1870
审稿时长
14 weeks
期刊介绍: Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy. Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field. Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信