Rhpn2 regulates the development and function of vestibular sensory hair cells through the RhoA signaling in zebrafish.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yubei Dai, Qianqian Li, Jiaju Deng, Sihang Wu, Guiyi Zhang, Yuebo Hu, Yuqian Shen, Dong Liu, Han Wu, Jie Gong
{"title":"Rhpn2 regulates the development and function of vestibular sensory hair cells through the RhoA signaling in zebrafish.","authors":"Yubei Dai, Qianqian Li, Jiaju Deng, Sihang Wu, Guiyi Zhang, Yuebo Hu, Yuqian Shen, Dong Liu, Han Wu, Jie Gong","doi":"10.1016/j.jgg.2025.04.006","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing and balance disorders are significant health issues primarily caused by developmental defects or the irreversible loss of sensory hair cells (HCs). Identifying the underlying genes involved in the morphogenesis and development of HCs is crucial. Our current study highlights rhpn2, a member of rho-binding proteins, as essential for vestibular HC development. The rhpn2 gene is highly expressed in the crista and macula HCs. Loss of rhpn2 function in zebrafish reduces the otic vesicle area and vestibular HC number, accompanied by vestibular dysfunction. Shorter stereocilia and compromised mechanotransduction channel function are found in the crista HCs of rhpn2 mutants. Transcriptome RNA sequencing analysis predicts the potential interaction of rhpn2 with rhoab. Furthermore, co-immunoprecipitation confirms that Rhpn2 directly binds to RhoA, validating the interaction of the two proteins. rhpn2 knockout leads to a decreased expression of rock2b, a canonical RhoA signaling pathway gene. Treatment with the RhoA activator or exogenous rock2b mRNA injection mitigates crista HC stereocilia defects in rhpn2 mutants. This study uncovers the role of rhpn2 in vestibular HC development and stereocilia formation via mediating the RhoA signaling pathway, providing a target for the treatment of balance disorders.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.04.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hearing and balance disorders are significant health issues primarily caused by developmental defects or the irreversible loss of sensory hair cells (HCs). Identifying the underlying genes involved in the morphogenesis and development of HCs is crucial. Our current study highlights rhpn2, a member of rho-binding proteins, as essential for vestibular HC development. The rhpn2 gene is highly expressed in the crista and macula HCs. Loss of rhpn2 function in zebrafish reduces the otic vesicle area and vestibular HC number, accompanied by vestibular dysfunction. Shorter stereocilia and compromised mechanotransduction channel function are found in the crista HCs of rhpn2 mutants. Transcriptome RNA sequencing analysis predicts the potential interaction of rhpn2 with rhoab. Furthermore, co-immunoprecipitation confirms that Rhpn2 directly binds to RhoA, validating the interaction of the two proteins. rhpn2 knockout leads to a decreased expression of rock2b, a canonical RhoA signaling pathway gene. Treatment with the RhoA activator or exogenous rock2b mRNA injection mitigates crista HC stereocilia defects in rhpn2 mutants. This study uncovers the role of rhpn2 in vestibular HC development and stereocilia formation via mediating the RhoA signaling pathway, providing a target for the treatment of balance disorders.

Rhpn2通过RhoA信号通路调控斑马鱼前庭感觉毛细胞的发育和功能。
听力和平衡障碍是重要的健康问题,主要由发育缺陷或感觉毛细胞(HCs)的不可逆损失引起。确定参与hcc形态发生和发展的潜在基因至关重要。我们目前的研究强调rhpn2, rho结合蛋白的一员,在前庭HC的发展中是必不可少的。rhpn2基因在嵴和黄斑型hcc中高度表达。斑马鱼rhpn2功能丧失可减少耳囊泡面积和前庭HC数,并伴有前庭功能障碍。在rhpn2突变体的crissta hc中发现较短的立体纤毛和受损的机械转导通道功能。转录组RNA测序分析预测了rhpn2与rhoab的潜在相互作用。此外,共免疫沉淀证实了Rhpn2直接与RhoA结合,证实了这两种蛋白的相互作用。敲除rhpn2可导致典型RhoA信号通路基因rock2b的表达降低。RhoA激活剂或外源性rock2b mRNA注射治疗可减轻rhpn2突变体的嵴HC立体纤毛缺陷。本研究揭示了rhpn2通过介导RhoA信号通路在前庭HC发育和立体纤毛形成中的作用,为平衡障碍的治疗提供了靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信