Jenni Laitila, Christopher T A Lewis, Anthony L Hessel, Guido Primiano, Aurelio Hernandez-Lain, Chiara Fiorillo, Michael W Lawlor, Coen A C Ottenheijm, Heinz Jungbluth, Ka Fu Man, Arianna Fornili, Julien Ochala
{"title":"Pathogenic TNNT1 variants are associated with aberrant thin filament compliance and myofibre hyper-contractility.","authors":"Jenni Laitila, Christopher T A Lewis, Anthony L Hessel, Guido Primiano, Aurelio Hernandez-Lain, Chiara Fiorillo, Michael W Lawlor, Coen A C Ottenheijm, Heinz Jungbluth, Ka Fu Man, Arianna Fornili, Julien Ochala","doi":"10.1113/JP288109","DOIUrl":null,"url":null,"abstract":"<p><p>In skeletal muscle, troponin T (TnT) exists in two isoforms, slow skeletal TnT (ssTnT) and fast skeletal TnT (fsTnT), encoded by the TNNT1 and TNNT3 genes, respectively. Nonsense or missense TNNT1 variants have been associated with skeletal muscle weakness and contractures and a histopathological appearance of nemaline myopathy (NM) on muscle biopsy. Little is known about how TNNT1 mutations ultimately lead to muscle dysfunction, preventing the development of targeted therapeutic interventions. Here, we aimed to identify the underlying molecular biophysical mechanisms, by investigating isolated skeletal myofibres from patients with TNNT1-related NM as well as from controls through a combination of structural and functional assays. Our studies revealed variable and unusual ssTnT and fsTnT expression patterns and post-translational modifications. We also observed that, in the presence of TNNT1 variants, the thin filament was more compliant, and this was associated with a higher myofibre Ca<sup>2+</sup> sensitivity. Altogether, our findings suggest TnT remodelling as the key mechanism ultimately leading to molecular and cellular hyper-contractility, and then inhibitors of altered contractility as potential therapeutic modalities for TNNT1-associated NM. KEY POINTS: No therapeutic treatment exists for patients with genetic TNNT1 mutations and skeletal muscle weakness/contractures. In these patients, expression and post-translational modifications of troponin T are severely disrupted. These are associated with changes in thin filament compliance where troponin T is located. All these induce muscle fibre hyper-contractility that can be reversed by mavacamten, a myosin ATPase inhibitor.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP288109","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In skeletal muscle, troponin T (TnT) exists in two isoforms, slow skeletal TnT (ssTnT) and fast skeletal TnT (fsTnT), encoded by the TNNT1 and TNNT3 genes, respectively. Nonsense or missense TNNT1 variants have been associated with skeletal muscle weakness and contractures and a histopathological appearance of nemaline myopathy (NM) on muscle biopsy. Little is known about how TNNT1 mutations ultimately lead to muscle dysfunction, preventing the development of targeted therapeutic interventions. Here, we aimed to identify the underlying molecular biophysical mechanisms, by investigating isolated skeletal myofibres from patients with TNNT1-related NM as well as from controls through a combination of structural and functional assays. Our studies revealed variable and unusual ssTnT and fsTnT expression patterns and post-translational modifications. We also observed that, in the presence of TNNT1 variants, the thin filament was more compliant, and this was associated with a higher myofibre Ca2+ sensitivity. Altogether, our findings suggest TnT remodelling as the key mechanism ultimately leading to molecular and cellular hyper-contractility, and then inhibitors of altered contractility as potential therapeutic modalities for TNNT1-associated NM. KEY POINTS: No therapeutic treatment exists for patients with genetic TNNT1 mutations and skeletal muscle weakness/contractures. In these patients, expression and post-translational modifications of troponin T are severely disrupted. These are associated with changes in thin filament compliance where troponin T is located. All these induce muscle fibre hyper-contractility that can be reversed by mavacamten, a myosin ATPase inhibitor.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.