Toward automated and explainable high-throughput perturbation analysis in single cells.

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jesus Gonzalez-Ferrer, Mohammed A Mostajo-Radji
{"title":"Toward automated and explainable high-throughput perturbation analysis in single cells.","authors":"Jesus Gonzalez-Ferrer, Mohammed A Mostajo-Radji","doi":"10.1016/j.patter.2025.101228","DOIUrl":null,"url":null,"abstract":"<p><p>Perturbation analysis in single-cell RNA sequencing (scRNA-seq) data is challenging due to the complexity of cellular responses. To address this, Xu and Fleming et al. developed CellCap, a generative deep-learning model that decodes the perturbation effect on a particular cell state. CellCap extracts interpretable latent representations of perturbation response modules, identifying key cellular pathways activated under various conditions. This allows for a deeper understanding of cell-state-specific responses to genetic, chemical, or biological perturbations.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 4","pages":"101228"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Perturbation analysis in single-cell RNA sequencing (scRNA-seq) data is challenging due to the complexity of cellular responses. To address this, Xu and Fleming et al. developed CellCap, a generative deep-learning model that decodes the perturbation effect on a particular cell state. CellCap extracts interpretable latent representations of perturbation response modules, identifying key cellular pathways activated under various conditions. This allows for a deeper understanding of cell-state-specific responses to genetic, chemical, or biological perturbations.

迈向自动化和可解释的单细胞高通量扰动分析。
由于细胞反应的复杂性,单细胞RNA测序(scRNA-seq)数据中的微扰分析具有挑战性。为了解决这个问题,Xu和Fleming等人开发了CellCap,这是一种生成式深度学习模型,可以解码对特定细胞状态的扰动效应。CellCap提取可解释的扰动响应模块的潜在表示,识别在各种条件下激活的关键细胞通路。这允许更深入地了解细胞状态对遗传,化学或生物扰动的特异性反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信