Application of CRISPR-Cas9 in microbial cell factories.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jinhui Yang, Junyan Song, Zeyu Feng, Yunqi Ma
{"title":"Application of CRISPR-Cas9 in microbial cell factories.","authors":"Jinhui Yang, Junyan Song, Zeyu Feng, Yunqi Ma","doi":"10.1007/s10529-025-03592-6","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolically engineered bacterial strains are rapidly emerging as a pivotal focus in the biosynthesis of an array of bio-based ingredients. Presently, CRISPR (clustered regularly interspaced short palindromic repeats) and its associated RNA-guided endonuclease (Cas9) are regarded as the most promising tool, having ushered in a transformative advancement in genome editing. Because of CRISPR-Cas9's accuracy and adaptability, metabolic engineers are now able to create novel regulatory systems, optimize pathways more effectively, and make extensive genome-scale alterations. Nevertheless, there are still obstacles to overcome in the application of CRISPR-Cas9 in novel microorganisms, particularly those industrial microorganism hosts that are resistant to traditional genetic manipulation techniques. How to further extend CRISPR-Cas9 to these microorganisms is an urgent problem to be solved. This article first introduces the mechanism and application of CRISPR-Cas9, and then discusses how to optimize CRISPR-Cas9 as a genome editing tool, including how to reduce off-target effects and how to improve targeting efficiency by optimizing design. Through offering a comprehensive perspective on the revolutionary effects of CRISPR-Cas9 in microbial cell factories, we hope to stimulate additional research and development in this exciting area.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 3","pages":"46"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03592-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolically engineered bacterial strains are rapidly emerging as a pivotal focus in the biosynthesis of an array of bio-based ingredients. Presently, CRISPR (clustered regularly interspaced short palindromic repeats) and its associated RNA-guided endonuclease (Cas9) are regarded as the most promising tool, having ushered in a transformative advancement in genome editing. Because of CRISPR-Cas9's accuracy and adaptability, metabolic engineers are now able to create novel regulatory systems, optimize pathways more effectively, and make extensive genome-scale alterations. Nevertheless, there are still obstacles to overcome in the application of CRISPR-Cas9 in novel microorganisms, particularly those industrial microorganism hosts that are resistant to traditional genetic manipulation techniques. How to further extend CRISPR-Cas9 to these microorganisms is an urgent problem to be solved. This article first introduces the mechanism and application of CRISPR-Cas9, and then discusses how to optimize CRISPR-Cas9 as a genome editing tool, including how to reduce off-target effects and how to improve targeting efficiency by optimizing design. Through offering a comprehensive perspective on the revolutionary effects of CRISPR-Cas9 in microbial cell factories, we hope to stimulate additional research and development in this exciting area.

CRISPR-Cas9在微生物细胞工厂中的应用
代谢工程细菌菌株正迅速成为一系列生物基成分生物合成的关键焦点。目前,CRISPR(聚集规律间隔短回文重复序列)及其相关的rna引导内切酶(Cas9)被认为是最有前途的工具,引领了基因组编辑的变革性进步。由于CRISPR-Cas9的准确性和适应性,代谢工程师现在能够创建新的调控系统,更有效地优化途径,并进行广泛的基因组规模的改变。然而,CRISPR-Cas9在新型微生物,特别是对传统基因操作技术有抗性的工业微生物宿主中的应用仍有一些障碍需要克服。如何将CRISPR-Cas9进一步延伸到这些微生物中是一个亟待解决的问题。本文首先介绍了CRISPR-Cas9的作用机制和应用,然后讨论了如何优化CRISPR-Cas9作为基因组编辑工具,包括如何减少脱靶效应,如何通过优化设计提高靶向效率。通过对CRISPR-Cas9在微生物细胞工厂中的革命性影响提供一个全面的视角,我们希望在这个令人兴奋的领域激发更多的研究和发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信