Mikko Saukkoriipi, Jaakko Sahlsten, Joel Jaskari, Ahmed Al-Tahmeesschi, Laura Ruotsalainen, Kimmo Kaski
{"title":"Head and Neck Tumor Segmentation Using Pre-RT MRI Scans and Cascaded DualUNet.","authors":"Mikko Saukkoriipi, Jaakko Sahlsten, Joel Jaskari, Ahmed Al-Tahmeesschi, Laura Ruotsalainen, Kimmo Kaski","doi":"10.1007/978-3-031-83274-1_14","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of the primary gross tumor volumes and metastatic lymph nodes in head and neck cancer is crucial for radiotherapy but remains challenging due to high interobserver variability, highlighting a need for an effective auto-segmentation tool. Tumor delineation is used throughout radiotherapy for treatment planning, initially for pre-radiotherapy (pre-RT) MRI scans followed-up by mid-radiotherapy (mid-RT) during the treatment. For the pre-RT task, we propose a dual-stage 3D UNet approach using cascaded neural networks for progressive accuracy refinement. The first-stage models produce an initial binary segmentation, which is then refined with an ensemble of second-stage models for a multiclass segmentation. In Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Task 1, we utilize a dataset consisting of pre-RT and mid-RT T2-weighted MRI scans. The method is trained using 5-fold cross-validation and evaluated as an ensemble of five coarse models and ten refinement models. Our approach (team FinoxyAI) achieves a mean aggregated Dice similarity coefficient of 0.737 on the test set. Moreover, with this metric, our dual-stage approach highlights consistent improvement in segmentation performance across all folds compared to a single-stage segmentation method.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"191-203"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-83274-1_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate segmentation of the primary gross tumor volumes and metastatic lymph nodes in head and neck cancer is crucial for radiotherapy but remains challenging due to high interobserver variability, highlighting a need for an effective auto-segmentation tool. Tumor delineation is used throughout radiotherapy for treatment planning, initially for pre-radiotherapy (pre-RT) MRI scans followed-up by mid-radiotherapy (mid-RT) during the treatment. For the pre-RT task, we propose a dual-stage 3D UNet approach using cascaded neural networks for progressive accuracy refinement. The first-stage models produce an initial binary segmentation, which is then refined with an ensemble of second-stage models for a multiclass segmentation. In Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Task 1, we utilize a dataset consisting of pre-RT and mid-RT T2-weighted MRI scans. The method is trained using 5-fold cross-validation and evaluated as an ensemble of five coarse models and ten refinement models. Our approach (team FinoxyAI) achieves a mean aggregated Dice similarity coefficient of 0.737 on the test set. Moreover, with this metric, our dual-stage approach highlights consistent improvement in segmentation performance across all folds compared to a single-stage segmentation method.