Head and Neck Tumor Segmentation Using Pre-RT MRI Scans and Cascaded DualUNet.

Mikko Saukkoriipi, Jaakko Sahlsten, Joel Jaskari, Ahmed Al-Tahmeesschi, Laura Ruotsalainen, Kimmo Kaski
{"title":"Head and Neck Tumor Segmentation Using Pre-RT MRI Scans and Cascaded DualUNet.","authors":"Mikko Saukkoriipi, Jaakko Sahlsten, Joel Jaskari, Ahmed Al-Tahmeesschi, Laura Ruotsalainen, Kimmo Kaski","doi":"10.1007/978-3-031-83274-1_14","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of the primary gross tumor volumes and metastatic lymph nodes in head and neck cancer is crucial for radiotherapy but remains challenging due to high interobserver variability, highlighting a need for an effective auto-segmentation tool. Tumor delineation is used throughout radiotherapy for treatment planning, initially for pre-radiotherapy (pre-RT) MRI scans followed-up by mid-radiotherapy (mid-RT) during the treatment. For the pre-RT task, we propose a dual-stage 3D UNet approach using cascaded neural networks for progressive accuracy refinement. The first-stage models produce an initial binary segmentation, which is then refined with an ensemble of second-stage models for a multiclass segmentation. In Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Task 1, we utilize a dataset consisting of pre-RT and mid-RT T2-weighted MRI scans. The method is trained using 5-fold cross-validation and evaluated as an ensemble of five coarse models and ten refinement models. Our approach (team FinoxyAI) achieves a mean aggregated Dice similarity coefficient of 0.737 on the test set. Moreover, with this metric, our dual-stage approach highlights consistent improvement in segmentation performance across all folds compared to a single-stage segmentation method.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"191-203"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-83274-1_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of the primary gross tumor volumes and metastatic lymph nodes in head and neck cancer is crucial for radiotherapy but remains challenging due to high interobserver variability, highlighting a need for an effective auto-segmentation tool. Tumor delineation is used throughout radiotherapy for treatment planning, initially for pre-radiotherapy (pre-RT) MRI scans followed-up by mid-radiotherapy (mid-RT) during the treatment. For the pre-RT task, we propose a dual-stage 3D UNet approach using cascaded neural networks for progressive accuracy refinement. The first-stage models produce an initial binary segmentation, which is then refined with an ensemble of second-stage models for a multiclass segmentation. In Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Task 1, we utilize a dataset consisting of pre-RT and mid-RT T2-weighted MRI scans. The method is trained using 5-fold cross-validation and evaluated as an ensemble of five coarse models and ten refinement models. Our approach (team FinoxyAI) achieves a mean aggregated Dice similarity coefficient of 0.737 on the test set. Moreover, with this metric, our dual-stage approach highlights consistent improvement in segmentation performance across all folds compared to a single-stage segmentation method.

使用预rt MRI扫描和级联DualUNet进行头颈部肿瘤分割。
头颈癌原发肿瘤体积和转移性淋巴结的准确分割对放疗至关重要,但由于观察者之间的高度可变性,仍然具有挑战性,这突出了对有效的自动分割工具的需求。肿瘤描绘在整个放疗过程中用于治疗计划,最初用于放疗前(pre-RT) MRI扫描,随后在治疗期间进行中期放疗(mid-RT)。对于预rt任务,我们提出了一种双阶段3D UNet方法,使用级联神经网络进行逐步精度细化。第一阶段模型产生一个初始的二值分割,然后用第二阶段模型的集合对其进行细化,得到一个多类分割。在磁共振引导应用的头颈部肿瘤分割(HNTS-MRG) 2024任务1中,我们使用了由rt前和rt中期t2加权MRI扫描组成的数据集。该方法使用5倍交叉验证进行训练,并作为5个粗糙模型和10个精细模型的集合进行评估。我们的方法(FinoxyAI团队)在测试集中实现了0.737的平均聚合骰子相似系数。此外,与单阶段分割方法相比,我们的双阶段方法在所有折叠的分割性能上都有一致的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信