Sung Ah Park, Arim Shin, Eunji Im, Do Hyeon Yu, Minji Kim, Chul Geun Kim, Eun Jung Baek
{"title":"Establishment of an <i>in vitro</i> erythroid differentiation system from canine peripheral blood mononuclear cells.","authors":"Sung Ah Park, Arim Shin, Eunji Im, Do Hyeon Yu, Minji Kim, Chul Geun Kim, Eun Jung Baek","doi":"10.1080/19768354.2025.2492148","DOIUrl":null,"url":null,"abstract":"<p><p>Blood transfusion is a critical, lifesaving medical procedure for dogs. However, the limited availability of blood donors and ethical concerns highlight the need for alternative solutions, such as <i>in vitro</i>-produced red blood cells (RBCs), which remain unexplored in canines. This study aimed to produce canine erythrocytes <i>in vitro</i> from peripheral blood (PB) mononuclear cells (MNCs), optimize culture conditions using either human or canine reagents, and identify relevant cell markers. Results indicated that canine erythropoiesis can be induced by human or canine cytokines, producing RBCs within approximately 20 days. Although cell numbers decreased during the first seven days, immature erythroid cells proliferated, reaching peak expansion and RBC production by day 17. Despite the smaller cell size of the cultured RBCs than that of humans, the morphology at each stage of erythroid maturation was analogous to that of human erythropoiesis. Furthermore, the expression patterns of canine alpha hemoglobin stabilizing protein and erythropoietin receptor mirrored those observed in human erythropoiesis. Oxygen-hemoglobin (oxygen-Hb) association and dissociation curves of cultured RBCs closely resembled those of native canine RBCs, indicating an appropriate oxygen-carrying capacity. This study presents the first evidence of successful <i>in vitro</i> production of canine RBCs, offering a promising tool for research and potential therapeutic applications.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"251-263"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2492148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Blood transfusion is a critical, lifesaving medical procedure for dogs. However, the limited availability of blood donors and ethical concerns highlight the need for alternative solutions, such as in vitro-produced red blood cells (RBCs), which remain unexplored in canines. This study aimed to produce canine erythrocytes in vitro from peripheral blood (PB) mononuclear cells (MNCs), optimize culture conditions using either human or canine reagents, and identify relevant cell markers. Results indicated that canine erythropoiesis can be induced by human or canine cytokines, producing RBCs within approximately 20 days. Although cell numbers decreased during the first seven days, immature erythroid cells proliferated, reaching peak expansion and RBC production by day 17. Despite the smaller cell size of the cultured RBCs than that of humans, the morphology at each stage of erythroid maturation was analogous to that of human erythropoiesis. Furthermore, the expression patterns of canine alpha hemoglobin stabilizing protein and erythropoietin receptor mirrored those observed in human erythropoiesis. Oxygen-hemoglobin (oxygen-Hb) association and dissociation curves of cultured RBCs closely resembled those of native canine RBCs, indicating an appropriate oxygen-carrying capacity. This study presents the first evidence of successful in vitro production of canine RBCs, offering a promising tool for research and potential therapeutic applications.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.