Robust Oxygen Evolution on Ni-Doped MoO3: Overcoming Activity-Stability Trade-Off in Alkaline Water Splitting.

Chem & Bio Engineering Pub Date : 2025-02-12 eCollection Date: 2025-04-24 DOI:10.1021/cbe.4c00160
Ankit Kumar Verma, Shahan Atif, Abhisek Padhy, Tej S Choksi, Prabeer Barpanda, Ananth Govind Rajan
{"title":"Robust Oxygen Evolution on Ni-Doped MoO<sub>3</sub>: Overcoming Activity-Stability Trade-Off in Alkaline Water Splitting.","authors":"Ankit Kumar Verma, Shahan Atif, Abhisek Padhy, Tej S Choksi, Prabeer Barpanda, Ananth Govind Rajan","doi":"10.1021/cbe.4c00160","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical water splitting using earth-abundant materials is crucial for enabling green hydrogen production and energy storage. In recent years, molybdenum trioxide (MoO<sub>3</sub>), a semiconducting material, has been proposed as a candidate catalyst for the oxygen evolution reaction (OER). Here, we advance nickel (Ni) doping of MoO<sub>3</sub> as a strategy to increase the activity and stability of the material during alkaline electrochemical water splitting, thereby overcoming the typical activity-stability trade-off encountered with OER catalysts. The instability of MoO<sub>3</sub> in alkaline media can be mitigated by doping with Ni, whose oxide is stable under such conditions. Using density functional theory (DFT) with Hubbard corrections, we show that Ni doping reduces the thermodynamic OER overpotential on the MoO<sub>3</sub> basal plane to 0.64 V. Experiments demonstrate that Ni-doped MoO<sub>3</sub> requires an overpotential of 0.34 V for an OER current density of 10 mA/cm<sup>2</sup> (and 0.56 V at 100 mA/cm<sup>2</sup>), as opposed to a value of 0.40 V for pure MoO<sub>3</sub>. Further, Ni-doped MoO<sub>3</sub> exhibits a lower Tafel slope of 74.8 mV/dec, compared to 98.3 mV/dec for the pristine material under alkaline conditions. While Mo leaches in alkaline conditions, X-ray photoelectron spectroscopy reveals enhanced stability with Ni doping. Overall, our work advances Ni-doped MoO<sub>3</sub> as a promising water-splitting electrocatalyst and provides new insights into its OER mechanism and stability in alkaline media. More generally, the work sheds light on choosing a dopant to increase a material's activity and stability, which will also find applications in other catalytic materials.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"241-252"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbe.4c00160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water splitting using earth-abundant materials is crucial for enabling green hydrogen production and energy storage. In recent years, molybdenum trioxide (MoO3), a semiconducting material, has been proposed as a candidate catalyst for the oxygen evolution reaction (OER). Here, we advance nickel (Ni) doping of MoO3 as a strategy to increase the activity and stability of the material during alkaline electrochemical water splitting, thereby overcoming the typical activity-stability trade-off encountered with OER catalysts. The instability of MoO3 in alkaline media can be mitigated by doping with Ni, whose oxide is stable under such conditions. Using density functional theory (DFT) with Hubbard corrections, we show that Ni doping reduces the thermodynamic OER overpotential on the MoO3 basal plane to 0.64 V. Experiments demonstrate that Ni-doped MoO3 requires an overpotential of 0.34 V for an OER current density of 10 mA/cm2 (and 0.56 V at 100 mA/cm2), as opposed to a value of 0.40 V for pure MoO3. Further, Ni-doped MoO3 exhibits a lower Tafel slope of 74.8 mV/dec, compared to 98.3 mV/dec for the pristine material under alkaline conditions. While Mo leaches in alkaline conditions, X-ray photoelectron spectroscopy reveals enhanced stability with Ni doping. Overall, our work advances Ni-doped MoO3 as a promising water-splitting electrocatalyst and provides new insights into its OER mechanism and stability in alkaline media. More generally, the work sheds light on choosing a dopant to increase a material's activity and stability, which will also find applications in other catalytic materials.

ni掺杂MoO3的稳健析氧:克服碱性水裂解的活性-稳定性权衡。
利用地球上丰富的材料进行电化学水分解对于实现绿色制氢和储能至关重要。近年来,三氧化钼(MoO3)作为一种半导体材料被提出作为析氧反应(OER)的候选催化剂。在这里,我们提出了镍(Ni)掺杂MoO3作为一种策略,以提高材料在碱性电化学水分解过程中的活性和稳定性,从而克服了OER催化剂遇到的典型活性-稳定性权衡。在碱性介质中掺杂镍可以减轻MoO3的不稳定性,镍的氧化物在碱性条件下是稳定的。利用Hubbard修正的密度泛函理论(DFT),我们发现Ni掺杂将MoO3基面上的热力学OER过电位降低到0.64 V。实验表明,当OER电流密度为10 mA/cm2时,掺杂ni的MoO3需要0.34 V的过电位(在100 mA/cm2时为0.56 V),而纯MoO3的过电位为0.40 V。此外,ni掺杂的MoO3表现出较低的Tafel斜率,为74.8 mV/dec,而原始材料在碱性条件下的Tafel斜率为98.3 mV/dec。当Mo在碱性条件下浸出时,x射线光电子能谱显示Ni掺杂增强了稳定性。总的来说,我们的工作推进了ni掺杂MoO3作为一种有前景的水分解电催化剂,并为其在碱性介质中的OER机制和稳定性提供了新的见解。更广泛地说,这项工作揭示了如何选择掺杂剂来增加材料的活性和稳定性,这也将在其他催化材料中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信