Automating Evaluation of AI Text Generation in Healthcare with a Large Language Model (LLM)-as-a-Judge.

Emma Croxford, Yanjun Gao, Elliot First, Nicholas Pellegrino, Miranda Schnier, John Caskey, Madeline Oguss, Graham Wills, Guanhua Chen, Dmitriy Dligach, Matthew M Churpek, Anoop Mayampurath, Frank Liao, Cherodeep Goswami, Karen K Wong, Brian W Patterson, Majid Afshar
{"title":"Automating Evaluation of AI Text Generation in Healthcare with a Large Language Model (LLM)-as-a-Judge.","authors":"Emma Croxford, Yanjun Gao, Elliot First, Nicholas Pellegrino, Miranda Schnier, John Caskey, Madeline Oguss, Graham Wills, Guanhua Chen, Dmitriy Dligach, Matthew M Churpek, Anoop Mayampurath, Frank Liao, Cherodeep Goswami, Karen K Wong, Brian W Patterson, Majid Afshar","doi":"10.1101/2025.04.22.25326219","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic Health Records (EHRs) store vast amounts of clinical information that are difficult for healthcare providers to summarize and synthesize relevant details to their practice. To reduce cognitive load on providers, generative AI with Large Language Models have emerged to automatically summarize patient records into clear, actionable insights and offload the cognitive burden for providers. However, LLM summaries need to be precise and free from errors, making evaluations on the quality of the summaries necessary. While human experts are the gold standard for evaluations, their involvement is time-consuming and costly. Therefore, we introduce and validate an automated method for evaluating real-world EHR multi-document summaries using an LLM as the evaluator, referred to as LLM-as-a-Judge. Benchmarking against the validated Provider Documentation Summarization Quality Instrument (PDSQI)-9 for human evaluation, our LLM-as-a-Judge framework demonstrated strong inter-rater reliability with human evaluators. GPT-o3-mini achieved the highest intraclass correlation coefficient of 0.818 (95% CI 0.772, 0.854), with a median score difference of 0 from human evaluators, and completes evaluations in just 22 seconds. Overall, the reasoning models excelled in inter-rater reliability, particularly in evaluations that require advanced reasoning and domain expertise, outperforming non-reasoning models, those trained on the task, and multi-agent workflows. Cross-task validation on the Problem Summarization task similarly confirmed high reliability. By automating high-quality evaluations, medical LLM-as-a-Judge offers a scalable, efficient solution to rapidly identify accurate and safe AI-generated summaries in healthcare settings.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.04.22.25326219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic Health Records (EHRs) store vast amounts of clinical information that are difficult for healthcare providers to summarize and synthesize relevant details to their practice. To reduce cognitive load on providers, generative AI with Large Language Models have emerged to automatically summarize patient records into clear, actionable insights and offload the cognitive burden for providers. However, LLM summaries need to be precise and free from errors, making evaluations on the quality of the summaries necessary. While human experts are the gold standard for evaluations, their involvement is time-consuming and costly. Therefore, we introduce and validate an automated method for evaluating real-world EHR multi-document summaries using an LLM as the evaluator, referred to as LLM-as-a-Judge. Benchmarking against the validated Provider Documentation Summarization Quality Instrument (PDSQI)-9 for human evaluation, our LLM-as-a-Judge framework demonstrated strong inter-rater reliability with human evaluators. GPT-o3-mini achieved the highest intraclass correlation coefficient of 0.818 (95% CI 0.772, 0.854), with a median score difference of 0 from human evaluators, and completes evaluations in just 22 seconds. Overall, the reasoning models excelled in inter-rater reliability, particularly in evaluations that require advanced reasoning and domain expertise, outperforming non-reasoning models, those trained on the task, and multi-agent workflows. Cross-task validation on the Problem Summarization task similarly confirmed high reliability. By automating high-quality evaluations, medical LLM-as-a-Judge offers a scalable, efficient solution to rapidly identify accurate and safe AI-generated summaries in healthcare settings.

基于大型语言模型(LLM)的医疗保健领域人工智能文本生成自动化评估。
电子健康记录(EHRs)存储了大量临床信息,医疗保健提供者很难总结和综合其实践的相关细节。为了减轻医疗服务提供者的认知负担,具有大型语言模型的生成式人工智能已经出现,可以自动将患者记录总结为清晰、可操作的见解,并减轻医疗服务提供者的认知负担。然而,法学硕士总结需要准确无误,没有错误,对总结的质量进行评估是必要的。虽然人类专家是评估的黄金标准,但他们的参与既耗时又昂贵。因此,我们引入并验证了一种自动化的方法,用于评估现实世界的EHR多文档摘要,使用LLM作为评估者,称为LLM-as-a- judge。针对经过验证的提供者文档摘要质量工具(PDSQI)-9进行人工评估的基准测试,我们的法学硕士作为法官框架与人工评估人员显示出很强的评估者之间的可靠性。gpt - 03 -mini的类内相关系数最高,为0.818 (95% CI 0.772, 0.854),与人类评估者的中位数评分差为0,仅在22秒内完成评估。总的来说,推理模型在评分者之间的可靠性方面表现出色,特别是在需要高级推理和领域专业知识的评估方面,优于非推理模型,那些在任务上训练的模型,以及多代理工作流。问题总结任务的跨任务验证同样证实了高可靠性。通过自动化高质量的评估,医学法学硕士作为法官提供了一个可扩展的、高效的解决方案,可以在医疗保健环境中快速识别准确和安全的人工智能生成的摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信