Cezar Kayzuka, Vitória Carolina Rondon-Pereira, Cecilia Nogueira Tavares, Mayra Pacheco Pachado, Fabiola Zakia Monica, Jose Eduardo Tanus-Santos, Riccardo Lacchini
{"title":"Epigenetics is involved in the pleiotropic effects of statins.","authors":"Cezar Kayzuka, Vitória Carolina Rondon-Pereira, Cecilia Nogueira Tavares, Mayra Pacheco Pachado, Fabiola Zakia Monica, Jose Eduardo Tanus-Santos, Riccardo Lacchini","doi":"10.1080/17425255.2025.2491732","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Statins have significantly reduced mortality from cardiovascular diseases by lowering serum cholesterol levels. Beyond their lipid-lowering effects, statins improve vascular function, reduce inflammation, decrease reactive oxygen species (ROS) formation, and stabilize atherosclerotic plaques. However, the mechanisms underlying these pleiotropic effects remain unclear.</p><p><strong>Area covered: </strong>This narrative review summarizes and discusses epigenetic mechanisms that may explain part of the pleiotropic effects of statins. This approach allows for a reevaluation of statin use beyond its cholesterol-lowering benefits. A structured search was conducted in the PubMed and Scopus databases using specific search terms, including articles published up to August 2024.</p><p><strong>Expert opinion: </strong>The pleiotropic effects of statins, including those mediated by the isoprenoid pathway, partially explain their clinical benefits. By inhibiting histone deacetylases (HDACs, the 'erasers') and DNA methyltransferases (DNMTs, the 'writers'), statins promote increased histone acetylation and reduced DNA methylation at gene promoter regions. These epigenetic modifications enhance chromatin accessibility, facilitating gene transcription and protecting the cardiovascular system. Further investigation into these epigenetic mechanisms could support the repositioning of statins for broader therapeutic applications. Statins may have benefits extending beyond their role in managing hypercholesterolemia, as their pleiotropic effects contribute to the prevention of cardiovascular disease-related mortality through mechanisms independent of LDL cholesterol reduction.</p>","PeriodicalId":94005,"journal":{"name":"Expert opinion on drug metabolism & toxicology","volume":" ","pages":"689-701"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug metabolism & toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425255.2025.2491732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Statins have significantly reduced mortality from cardiovascular diseases by lowering serum cholesterol levels. Beyond their lipid-lowering effects, statins improve vascular function, reduce inflammation, decrease reactive oxygen species (ROS) formation, and stabilize atherosclerotic plaques. However, the mechanisms underlying these pleiotropic effects remain unclear.
Area covered: This narrative review summarizes and discusses epigenetic mechanisms that may explain part of the pleiotropic effects of statins. This approach allows for a reevaluation of statin use beyond its cholesterol-lowering benefits. A structured search was conducted in the PubMed and Scopus databases using specific search terms, including articles published up to August 2024.
Expert opinion: The pleiotropic effects of statins, including those mediated by the isoprenoid pathway, partially explain their clinical benefits. By inhibiting histone deacetylases (HDACs, the 'erasers') and DNA methyltransferases (DNMTs, the 'writers'), statins promote increased histone acetylation and reduced DNA methylation at gene promoter regions. These epigenetic modifications enhance chromatin accessibility, facilitating gene transcription and protecting the cardiovascular system. Further investigation into these epigenetic mechanisms could support the repositioning of statins for broader therapeutic applications. Statins may have benefits extending beyond their role in managing hypercholesterolemia, as their pleiotropic effects contribute to the prevention of cardiovascular disease-related mortality through mechanisms independent of LDL cholesterol reduction.