Multimodal Diagnostic Approach for Osteosarcoma and Bone Callus Using Hyperspectral Imaging and Deep Learning

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Yan Li, Bingsen Zhao, Shuangxiu Li, Xiaoqing Yang, Minmin Yu, Zhijun Li
{"title":"Multimodal Diagnostic Approach for Osteosarcoma and Bone Callus Using Hyperspectral Imaging and Deep Learning","authors":"Yan Li,&nbsp;Bingsen Zhao,&nbsp;Shuangxiu Li,&nbsp;Xiaoqing Yang,&nbsp;Minmin Yu,&nbsp;Zhijun Li","doi":"10.1002/jbio.202500087","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Distinguishing osteosarcoma from bone callus remains a clinical challenge due to their morphological similarities. This study proposes J-CAN, a multimodal deep learning framework integrating hyperspectral imaging (HSI) and H&amp;E-stained pathology for rapid and accurate classification. The HSI system captures 176 spectral bands (400–1000 nm), providing molecular-level insights. MobileNetV2 extracts spatial features, while 1D-CNN processes spectral signatures. A self-attention mechanism enhances feature selection, prioritizing key spectral and spatial characteristics to improve classification performance. Experimental results show that J-CAN outperforms conventional models, including LSTM, SVM, and 1D-CNN, achieving 87.33% accuracy, 89.07% sensitivity, and 85.49% specificity. These findings demonstrate the potential of HSI-driven deep learning for clinical pathology, enabling efficient, automated osteosarcoma diagnosis. This approach enhances diagnostic precision and provides a valuable tool for pathologists, addressing the limitations of traditional histopathological assessments and improving the differentiation between osteosarcoma and bone callus.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500087","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Distinguishing osteosarcoma from bone callus remains a clinical challenge due to their morphological similarities. This study proposes J-CAN, a multimodal deep learning framework integrating hyperspectral imaging (HSI) and H&E-stained pathology for rapid and accurate classification. The HSI system captures 176 spectral bands (400–1000 nm), providing molecular-level insights. MobileNetV2 extracts spatial features, while 1D-CNN processes spectral signatures. A self-attention mechanism enhances feature selection, prioritizing key spectral and spatial characteristics to improve classification performance. Experimental results show that J-CAN outperforms conventional models, including LSTM, SVM, and 1D-CNN, achieving 87.33% accuracy, 89.07% sensitivity, and 85.49% specificity. These findings demonstrate the potential of HSI-driven deep learning for clinical pathology, enabling efficient, automated osteosarcoma diagnosis. This approach enhances diagnostic precision and provides a valuable tool for pathologists, addressing the limitations of traditional histopathological assessments and improving the differentiation between osteosarcoma and bone callus.

基于高光谱成像和深度学习的骨肉瘤和骨痂多模态诊断方法。
区分骨肉瘤和骨痂是一个临床挑战,因为它们的形态相似。本研究提出了J-CAN,一种多模态深度学习框架,将高光谱成像(HSI)和h&e染色病理学相结合,用于快速准确的分类。HSI系统捕获176个光谱波段(400-1000 nm),提供分子水平的见解。MobileNetV2提取空间特征,而1D-CNN处理光谱特征。自关注机制增强了特征选择,优先考虑关键的光谱和空间特征,以提高分类性能。实验结果表明,J-CAN优于LSTM、SVM、1D-CNN等传统模型,准确率为87.33%,灵敏度为89.07%,特异度为85.49%。这些发现证明了hsi驱动的深度学习在临床病理学中的潜力,可以实现高效、自动化的骨肉瘤诊断。这种方法提高了诊断精度,为病理学家提供了有价值的工具,解决了传统组织病理学评估的局限性,提高了骨肉瘤和骨痂之间的区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信