Application of Hyperspectral Imaging and Machine Learning for Differential Diagnosis of Hashimoto's Thyroiditis and Papillary Thyroid Carcinoma.

Yue Xiaoqing, Fan Danfeng, Li Hongmin, Chen Zhengyuan, Lv Haiyue, Hang Tianyi, Wang Huanjun
{"title":"Application of Hyperspectral Imaging and Machine Learning for Differential Diagnosis of Hashimoto's Thyroiditis and Papillary Thyroid Carcinoma.","authors":"Yue Xiaoqing, Fan Danfeng, Li Hongmin, Chen Zhengyuan, Lv Haiyue, Hang Tianyi, Wang Huanjun","doi":"10.1002/jbio.202500123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC) often share similar features, leading to frequent misdiagnoses. Hyperspectral imaging (HSI) offers detailed spatial and spectral insights, promising improved tumor detection.</p><p><strong>Objective: </strong>This study aims to discern HT and PTC spectral characteristics using HSI and evaluate deep learning models for pathologic diagnostic effects.</p><p><strong>Methods: </strong>Hyperspectral data from HT and PTC samples were processed using second-order derivatives and Savitzky-Golay smoothing. The adaptive spectral feature selection network model classified spectral data from various wavelengths to assess performance.</p><p><strong>Results: </strong>PTC showed unique spectral features in the 400-500 nm range with higher peak intensities at lower wavelengths than HT. The model achieved 88.36% accuracy, highlighting the importance of low-wavelength data in differentiating PTC from HT.</p><p><strong>Conclusion: </strong>The model effectively identifies spectral differences between HT and PTC, offering a novel approach for precise thyroid disease diagnosis.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500123"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC) often share similar features, leading to frequent misdiagnoses. Hyperspectral imaging (HSI) offers detailed spatial and spectral insights, promising improved tumor detection.

Objective: This study aims to discern HT and PTC spectral characteristics using HSI and evaluate deep learning models for pathologic diagnostic effects.

Methods: Hyperspectral data from HT and PTC samples were processed using second-order derivatives and Savitzky-Golay smoothing. The adaptive spectral feature selection network model classified spectral data from various wavelengths to assess performance.

Results: PTC showed unique spectral features in the 400-500 nm range with higher peak intensities at lower wavelengths than HT. The model achieved 88.36% accuracy, highlighting the importance of low-wavelength data in differentiating PTC from HT.

Conclusion: The model effectively identifies spectral differences between HT and PTC, offering a novel approach for precise thyroid disease diagnosis.

高光谱成像与机器学习在桥本甲状腺炎与甲状腺乳头状癌鉴别诊断中的应用。
背景:桥本甲状腺炎(HT)和甲状腺乳头状癌(PTC)往往具有相似的特征,导致经常误诊。高光谱成像(HSI)提供了详细的空间和光谱信息,有望改善肿瘤检测。目的:本研究旨在利用HSI识别HT和PTC的光谱特征,并评估深度学习模型在病理诊断中的作用。方法:对HT和PTC样品的高光谱数据进行二阶导数和Savitzky-Golay平滑处理。自适应光谱特征选择网络模型对不同波长的光谱数据进行分类,评估性能。结果:PTC在400 ~ 500 nm范围内表现出独特的光谱特征,在较低波长处的峰值强度高于HT。该模型的准确率达到了88.36%,突出了低波长数据在区分PTC和HT中的重要性。结论:该模型能有效识别甲状腺疾病的光谱差异,为甲状腺疾病的精确诊断提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信