FlowDesign: Improved design of antibody CDRs through flow matching and better prior distributions.

Jun Wu, Xiangzhe Kong, Ningguan Sun, Jing Wei, Sisi Shan, Fuli Feng, Feng Wu, Jian Peng, Linqi Zhang, Yang Liu, Jianzhu Ma
{"title":"FlowDesign: Improved design of antibody CDRs through flow matching and better prior distributions.","authors":"Jun Wu, Xiangzhe Kong, Ningguan Sun, Jing Wei, Sisi Shan, Fuli Feng, Feng Wu, Jian Peng, Linqi Zhang, Yang Liu, Jianzhu Ma","doi":"10.1016/j.cels.2025.101270","DOIUrl":null,"url":null,"abstract":"<p><p>Designing antibodies with desired binding specificity and affinity is essential for pharmaceutical research. While diffusion-based models have advanced the co-design of the complementarity-determining region (CDR) sequences and structures, challenges remain, including non-informative priors, incompatibility with discrete amino acid types, and impractical computational costs in large-scale sampling. To address these, we propose FlowDesign, a sequence-structure co-design approach via flow matching, offering (1) flexible prior selection, (2) direct matching of discrete distributions, and (3) enhanced efficiency for large-scale sampling. By leveraging various priors, data-driven structural models proved the most informative. FlowDesign outperformed baselines in amino acid recovery (AAR), root-mean-square deviation (RMSD), and Rosetta energy. We also applied FlowDesign to design antibodies targeting the HIV-1 receptor CD4. FlowDesign yielded antibodies with improved binding affinity and neutralizing potency compared with the antibody ibalizumab across multiple HIV mutants, validated by biolayer interferometry (BLI) and pseudovirus neutralization. This highlights FlowDesign's potential in antibody and protein design. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101270"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing antibodies with desired binding specificity and affinity is essential for pharmaceutical research. While diffusion-based models have advanced the co-design of the complementarity-determining region (CDR) sequences and structures, challenges remain, including non-informative priors, incompatibility with discrete amino acid types, and impractical computational costs in large-scale sampling. To address these, we propose FlowDesign, a sequence-structure co-design approach via flow matching, offering (1) flexible prior selection, (2) direct matching of discrete distributions, and (3) enhanced efficiency for large-scale sampling. By leveraging various priors, data-driven structural models proved the most informative. FlowDesign outperformed baselines in amino acid recovery (AAR), root-mean-square deviation (RMSD), and Rosetta energy. We also applied FlowDesign to design antibodies targeting the HIV-1 receptor CD4. FlowDesign yielded antibodies with improved binding affinity and neutralizing potency compared with the antibody ibalizumab across multiple HIV mutants, validated by biolayer interferometry (BLI) and pseudovirus neutralization. This highlights FlowDesign's potential in antibody and protein design. A record of this paper's transparent peer review process is included in the supplemental information.

FlowDesign:通过流程匹配和更好的先验分布,改进抗体cdr的设计。
设计具有所需结合特异性和亲和力的抗体对药物研究至关重要。虽然基于扩散的模型促进了互补决定区(CDR)序列和结构的协同设计,但仍然存在挑战,包括非信息性先验,与离散氨基酸类型不相容以及大规模采样时不切实际的计算成本。为了解决这些问题,我们提出了FlowDesign,一种通过流匹配的序列结构协同设计方法,提供(1)灵活的先验选择,(2)离散分布的直接匹配,以及(3)大规模采样的提高效率。通过利用各种先验,数据驱动的结构模型被证明是最具信息量的。FlowDesign在氨基酸回收率(AAR)、均方根偏差(RMSD)和Rosetta能量方面优于基线。我们还应用FlowDesign设计了针对HIV-1受体CD4的抗体。与抗体ibalizumab相比,FlowDesign产生的抗体在多种HIV突变体中具有更好的结合亲和力和中和效力,并通过生物层干涉测量(BLI)和假病毒中和验证。这凸显了FlowDesign在抗体和蛋白质设计方面的潜力。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信