Single-cell RNA sequencing reveals sex differences in the subcellular composition and associated gene-regulatory network activity of human carotid plaques.
Katyayani Sukhavasi, Giuseppe Mocci, Lijiang Ma, Chani J Hodonsky, Ernest Diez Benevante, Lars Muhl, Jianping Liu, Sonja Gustafsson, Byambajav Buyandelger, Simon Koplev, Urban Lendahl, Michael Vanlandewijck, Prosanta Singha, Tiit Örd, Mustafa Beter, Ilakya Selvarajan, Johanna P Laakkonen, Marika Väli, Hester M den Ruijter, Mete Civelek, Ke Hao, Arno Ruusalepp, Christer Betsholtz, Heli Järve, Jason C Kovacic, Clint L Miller, Casey Romanoski, Minna U Kaikkonen, Johan L M Björkegren
{"title":"Single-cell RNA sequencing reveals sex differences in the subcellular composition and associated gene-regulatory network activity of human carotid plaques.","authors":"Katyayani Sukhavasi, Giuseppe Mocci, Lijiang Ma, Chani J Hodonsky, Ernest Diez Benevante, Lars Muhl, Jianping Liu, Sonja Gustafsson, Byambajav Buyandelger, Simon Koplev, Urban Lendahl, Michael Vanlandewijck, Prosanta Singha, Tiit Örd, Mustafa Beter, Ilakya Selvarajan, Johanna P Laakkonen, Marika Väli, Hester M den Ruijter, Mete Civelek, Ke Hao, Arno Ruusalepp, Christer Betsholtz, Heli Järve, Jason C Kovacic, Clint L Miller, Casey Romanoski, Minna U Kaikkonen, Johan L M Björkegren","doi":"10.1038/s44161-025-00628-y","DOIUrl":null,"url":null,"abstract":"<p><p>Carotid stenosis causes ischemic stroke in both sexes, but the clinical presentation and plaque characteristics differ. Here we run deep single-cell sequencing of 7,690 human carotid plaque cells from male and female patients. While we found no sex differences in major cell types, we identified a predominance of the osteogenic phenotype in smooth muscle cells, immunomodulating macrophages (MPs) and endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition in females. In males, we found smooth muscle cells with the chondrocytic phenotype, MPs involved in tissue remodeling and ECs with angiogenic activity. Sex-biased subcellular clusters were integrated with tissue-specific gene-regulatory networks (GRNs) from the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study. We identified GRN195 involved in angiogenesis and T cell-mediated cytotoxicity in male ECs, while in females, we found GRN33 and GRN122 related to TREM2<sup>-</sup>/TREM1<sup>+</sup> MPs and endothelial-to-mesenchymal transition. The impact of GRN195 on EC proliferation in males was functionally validated, providing evidence for potential therapy targets for atherosclerosis that are sex specific.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 4","pages":"412-432"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00628-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Carotid stenosis causes ischemic stroke in both sexes, but the clinical presentation and plaque characteristics differ. Here we run deep single-cell sequencing of 7,690 human carotid plaque cells from male and female patients. While we found no sex differences in major cell types, we identified a predominance of the osteogenic phenotype in smooth muscle cells, immunomodulating macrophages (MPs) and endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition in females. In males, we found smooth muscle cells with the chondrocytic phenotype, MPs involved in tissue remodeling and ECs with angiogenic activity. Sex-biased subcellular clusters were integrated with tissue-specific gene-regulatory networks (GRNs) from the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study. We identified GRN195 involved in angiogenesis and T cell-mediated cytotoxicity in male ECs, while in females, we found GRN33 and GRN122 related to TREM2-/TREM1+ MPs and endothelial-to-mesenchymal transition. The impact of GRN195 on EC proliferation in males was functionally validated, providing evidence for potential therapy targets for atherosclerosis that are sex specific.