Environmental factors and blueberry anthocyanin-induced conformational changes modulate the interaction between myofibrillar proteins and fishy compounds and their mechanism, specifically aldehydes and alcohols.

Huaxing Xiong, Lei Chen, Hui Teng
{"title":"Environmental factors and blueberry anthocyanin-induced conformational changes modulate the interaction between myofibrillar proteins and fishy compounds and their mechanism, specifically aldehydes and alcohols.","authors":"Huaxing Xiong, Lei Chen, Hui Teng","doi":"10.1016/j.foodres.2025.116220","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the impact of blueberry anthocyanin (BA) on the interaction between tilapia myofibrillar protein (MP) and fishy compounds (hexanal, octanal, nonanal, trans-2-nonenal, and 1-octen-3-ol). Results indicated that at a protein concentration of 5 mg/mL and fishy compounds at 5 μg/mL, MP effectively adsorbed these compounds at 4 °C, pH 7.0, and 0.6 mol/L Na<sup>+</sup>. Increasing BA concentration (0.03-0.24 mg/mL) enhanced the α-helix content of MP from 30 % to 60 %, with a blue shift in the maximum fluorescence emission peak (333-337 nm), suggesting that BA promotes protein structural folding and stability. In MP and fresh fish models, BA addition significantly decreased hexanal (from 50.2 % ± 1.6 % to 29.0 % ± 9.5 %), octanal (from 97.8 % ± 1.6 % to 38.7 % ± 1.8 %), and nonanal (from 69.4 % ± 7.7 % to 39.0 %). Conversely, higher BA concentrations led to increased release of 1-octene-3-ol (from 104.1 % ± 4.4 % to 120.4 % ± 1.1 %). Overall, the findings highlight the correlation between BA's effects on protein folding and stabilization and its influence on the controlled release of fishy compounds, underscoring the significance of polyphenols in protein-flavor interactions. This research offers valuable insights into flavor management and establishes a theoretical basis for flavor regulation in tilapia meat products, contributing to the broader study of quality control and flavor enhancement in meat products through natural pigment active ingredients.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"208 ","pages":"116220"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.116220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the impact of blueberry anthocyanin (BA) on the interaction between tilapia myofibrillar protein (MP) and fishy compounds (hexanal, octanal, nonanal, trans-2-nonenal, and 1-octen-3-ol). Results indicated that at a protein concentration of 5 mg/mL and fishy compounds at 5 μg/mL, MP effectively adsorbed these compounds at 4 °C, pH 7.0, and 0.6 mol/L Na+. Increasing BA concentration (0.03-0.24 mg/mL) enhanced the α-helix content of MP from 30 % to 60 %, with a blue shift in the maximum fluorescence emission peak (333-337 nm), suggesting that BA promotes protein structural folding and stability. In MP and fresh fish models, BA addition significantly decreased hexanal (from 50.2 % ± 1.6 % to 29.0 % ± 9.5 %), octanal (from 97.8 % ± 1.6 % to 38.7 % ± 1.8 %), and nonanal (from 69.4 % ± 7.7 % to 39.0 %). Conversely, higher BA concentrations led to increased release of 1-octene-3-ol (from 104.1 % ± 4.4 % to 120.4 % ± 1.1 %). Overall, the findings highlight the correlation between BA's effects on protein folding and stabilization and its influence on the controlled release of fishy compounds, underscoring the significance of polyphenols in protein-flavor interactions. This research offers valuable insights into flavor management and establishes a theoretical basis for flavor regulation in tilapia meat products, contributing to the broader study of quality control and flavor enhancement in meat products through natural pigment active ingredients.

环境因素和蓝莓花青素诱导的构象变化调节了肌纤维蛋白与鱼腥味化合物之间的相互作用及其机制,特别是醛和醇。
本研究研究了蓝莓花青素(BA)对罗非鱼肌纤维蛋白(MP)与鱼腥味化合物(己醛、辛醛、壬醛、反式-2-壬醛和1-辛醛-3-醇)相互作用的影响。结果表明,在蛋白质浓度为5 mg/mL、鱼腥味化合物浓度为5 μg/mL时,MP在4℃、pH 7.0、0.6 mol/L Na+条件下均能有效吸附这些化合物。增加BA浓度(0.03 ~ 0.24 mg/mL)可使MP α-螺旋含量从30%提高到60%,最大荧光发射峰(333 ~ 337 nm)出现蓝移,表明BA促进了蛋白质结构折叠和稳定性。在MP和鲜鱼模型中,BA的添加显著降低了己醛(从50.2%±1.6%降至29.0%±9.5%)、辛醛(从97.8%±1.6%降至38.7%±1.8%)和壬醛(从69.4%±7.7%降至39.0%)。相反,较高的BA浓度导致1-辛烯-3-醇释放量增加(从104.1%±4.4%增加到120.4%±1.1%)。总的来说,这些发现强调了BA对蛋白质折叠和稳定的影响及其对鱼腥味化合物控制释放的影响之间的相关性,强调了多酚在蛋白质-风味相互作用中的重要性。本研究为罗非鱼肉制品的风味管理提供了有价值的见解,为罗非鱼肉制品的风味调控奠定了理论基础,有助于通过天然色素活性成分对肉制品的质量控制和风味增强进行更广泛的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信