Image-based temporal profiling of autophagy-related phenotypes.

Autophagy reports Pub Date : 2025-01-01 Epub Date: 2025-04-08 DOI:10.1080/27694127.2025.2484835
Nitin Sai Beesabathuni, Neil Alvin B Adia, Eshan Thilakaratne, Ritika Gangaraju, Priya S Shah
{"title":"Image-based temporal profiling of autophagy-related phenotypes.","authors":"Nitin Sai Beesabathuni, Neil Alvin B Adia, Eshan Thilakaratne, Ritika Gangaraju, Priya S Shah","doi":"10.1080/27694127.2025.2484835","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a dynamic process critical in maintaining cellular homoeostasis. Dysregulation of autophagy is linked to many diseases and is emerging as a promising therapeutic target. High-throughput methods to characterise autophagy are essential for accelerating drug discovery and characterising mechanisms of action. In this study, we developed a scalable image-based temporal profiling approach to characterise ~900 morphological features at a single cell level with high temporal resolution. We differentiated drug treatments based on morphological profiles using a random forest classifier with ~90% accuracy and identified the key features that govern classification. Additionally, temporal morphological profiles accurately predicted biologically relevant changes in autophagy after perturbation, such as total cargo degraded. Therefore, this study acts as proof-of-principle for using image-based temporal profiling to differentiate autophagy perturbations in a high-throughput manner and has the potential identify biologically relevant autophagy phenotypes. Ultimately, approaches like image-based temporal profiling can accelerate drug discovery.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2025.2484835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagy is a dynamic process critical in maintaining cellular homoeostasis. Dysregulation of autophagy is linked to many diseases and is emerging as a promising therapeutic target. High-throughput methods to characterise autophagy are essential for accelerating drug discovery and characterising mechanisms of action. In this study, we developed a scalable image-based temporal profiling approach to characterise ~900 morphological features at a single cell level with high temporal resolution. We differentiated drug treatments based on morphological profiles using a random forest classifier with ~90% accuracy and identified the key features that govern classification. Additionally, temporal morphological profiles accurately predicted biologically relevant changes in autophagy after perturbation, such as total cargo degraded. Therefore, this study acts as proof-of-principle for using image-based temporal profiling to differentiate autophagy perturbations in a high-throughput manner and has the potential identify biologically relevant autophagy phenotypes. Ultimately, approaches like image-based temporal profiling can accelerate drug discovery.

自噬相关表型的基于图像的时间分析。
自噬是维持细胞内平衡的一个动态过程。自噬失调与许多疾病有关,并正在成为一个有希望的治疗靶点。表征自噬的高通量方法对于加速药物发现和表征作用机制至关重要。在这项研究中,我们开发了一种可扩展的基于图像的时间分析方法,以高时间分辨率在单细胞水平上表征约900个形态特征。我们使用随机森林分类器根据形态特征区分药物治疗,准确率约为90%,并确定了控制分类的关键特征。此外,时间形态特征准确地预测了扰动后自噬的生物学相关变化,例如总货物降解。因此,本研究作为使用基于图像的时间谱以高通量方式区分自噬扰动的原理证明,并具有识别生物学相关自噬表型的潜力。最终,像基于图像的时间分析这样的方法可以加速药物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信