{"title":"Camouflage From Coevolution of Predator and Prey","authors":"Craig Reynolds","doi":"10.1162/artl_a_00473","DOIUrl":null,"url":null,"abstract":"Camouflage in nature seems to arise from competition between predator and prey. To survive, predators must find prey, while prey must avoid being found. A simulation model of that adversarial relationship is presented here. Camouflage patterns of prey coevolve in competition with visual perception of predators. During their lifetimes, predators learn to better locate the camouflaged prey they encounter. The environment for this 2-D simulation is provided by photographs of natural scenes. The model consists of two evolving populations, one of prey and another of predators. Conflict between these populations produces both effective prey camouflage and predators able to “break” camouflage. The resulting open-source Artificial Life model can help the study of camouflage in nature and the perceptual phenomenon of camouflage more generally.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 2","pages":"153-176"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11007776/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Camouflage in nature seems to arise from competition between predator and prey. To survive, predators must find prey, while prey must avoid being found. A simulation model of that adversarial relationship is presented here. Camouflage patterns of prey coevolve in competition with visual perception of predators. During their lifetimes, predators learn to better locate the camouflaged prey they encounter. The environment for this 2-D simulation is provided by photographs of natural scenes. The model consists of two evolving populations, one of prey and another of predators. Conflict between these populations produces both effective prey camouflage and predators able to “break” camouflage. The resulting open-source Artificial Life model can help the study of camouflage in nature and the perceptual phenomenon of camouflage more generally.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.