Ruhi Türkmen, Yavuz Osman Birdane, Orkun Atik, Hasan Huseyin Demirel, Durmus Fatih Baser
{"title":"Protective effects of chlorogenic acid against glyphosate-induced organ and blood toxicity in Wistar rats.","authors":"Ruhi Türkmen, Yavuz Osman Birdane, Orkun Atik, Hasan Huseyin Demirel, Durmus Fatih Baser","doi":"10.2478/aiht-2025-76-3955","DOIUrl":null,"url":null,"abstract":"<p><p>Glyphosate, a widely used herbicide against broadleaf weeds and grasses, has been associated with various harmful effects. Our study examines the efficacy of chlorogenic acid (CGA) in alleviating the toxicity of a glyphosate-based herbicide (GBH) in 42 Wistar rats across six groups of seven animals receiving either no treatment (control), CGA alone (50 mg/kg), GBH alone (800 mg/kg), or their combinations varying three CGA doses (12.5, 25, or 50 mg/kg) (CGA12.5+GBH, CGA25+GBH, and CGA50+GBH, respectively) by oral gavage over 49 days in a row. At the end of the experiment, samples of blood, brain, heart, liver, and kidney tissues were collected and analysed for oxidative stress indicators (MDA, GSH, SOD, CAT), oxidative DNA damage (8-OHdG), liver and kidney function markers (AST, ALT, ALP, urea, and creatinine) as well as for histopathological changes. As expected, GBH increased AST ALT, ALP, urea, creatinine, 8-OHdG, and MDA levels, and lowered GSH levels and SOD and CAT activities, leaving histopathological changes in the brain, heart, liver, and kidney tissues. CGA dose-dependently improved biochemical and oxidative stress parameters and reversed histopathological changes in GBH-treated albino rats. Our findings consistently confirm the potential of CGA as a promising natural agent against the adverse health effects associated with exposure to glyphosate. Future research should focus on long-term glyphosate exposure and CGA treatment using molecular methods and on the signalling pathways associated with oxidative stress.</p>","PeriodicalId":55462,"journal":{"name":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","volume":"76 1","pages":"44-52"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/aiht-2025-76-3955","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Glyphosate, a widely used herbicide against broadleaf weeds and grasses, has been associated with various harmful effects. Our study examines the efficacy of chlorogenic acid (CGA) in alleviating the toxicity of a glyphosate-based herbicide (GBH) in 42 Wistar rats across six groups of seven animals receiving either no treatment (control), CGA alone (50 mg/kg), GBH alone (800 mg/kg), or their combinations varying three CGA doses (12.5, 25, or 50 mg/kg) (CGA12.5+GBH, CGA25+GBH, and CGA50+GBH, respectively) by oral gavage over 49 days in a row. At the end of the experiment, samples of blood, brain, heart, liver, and kidney tissues were collected and analysed for oxidative stress indicators (MDA, GSH, SOD, CAT), oxidative DNA damage (8-OHdG), liver and kidney function markers (AST, ALT, ALP, urea, and creatinine) as well as for histopathological changes. As expected, GBH increased AST ALT, ALP, urea, creatinine, 8-OHdG, and MDA levels, and lowered GSH levels and SOD and CAT activities, leaving histopathological changes in the brain, heart, liver, and kidney tissues. CGA dose-dependently improved biochemical and oxidative stress parameters and reversed histopathological changes in GBH-treated albino rats. Our findings consistently confirm the potential of CGA as a promising natural agent against the adverse health effects associated with exposure to glyphosate. Future research should focus on long-term glyphosate exposure and CGA treatment using molecular methods and on the signalling pathways associated with oxidative stress.
期刊介绍:
Archives of Industrial Hygiene and Toxicology (abbr. Arh Hig Rada Toksikol) is a peer-reviewed biomedical scientific quarterly that publishes contributions relevant to all aspects of environmental and occupational health and toxicology.