Bio-inspired multimodal soft grippers: a review.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Minshi Liang, Jiaqi Zhu, Xingxing Ke, Zhiping Chai, Han Ding, Zhigang Wu
{"title":"Bio-inspired multimodal soft grippers: a review.","authors":"Minshi Liang, Jiaqi Zhu, Xingxing Ke, Zhiping Chai, Han Ding, Zhigang Wu","doi":"10.1088/1748-3190/add1a6","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, organisms have evolved diverse grasping mechanisms to perform vital functions such as hunting and self-defence. These time-tested biological structures, including the arms of octopuses and the trunks of elephants, offer valuable inspiration for designing multimodal soft grippers that can tackle diverse tasks in various environments. Similar to their biological counterparts, these grippers must adapt to dynamic working conditions to enhance their performance. This adaptation process involves multiple factors, including grasping mechanisms, structural design, materials, and application scenarios, with biomimetic strategies offering numerous innovative examples. Despite the significant potential of bio-inspired designs, it lacks comprehensive reviews that explore how these strategies can enhance the development of multimodal soft grippers. This review seeks to address this gap by providing a systematic review of how bioinspired approaches contribute to the advancement of multimodal grippers. It focuses on coupling strategies, integration methods, performance improvements, and application scenarios. Finally, the review explores how future biomimetic insights could address current challenges and further improve the functionality of multimodal grippers.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/add1a6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In nature, organisms have evolved diverse grasping mechanisms to perform vital functions such as hunting and self-defence. These time-tested biological structures, including the arms of octopuses and the trunks of elephants, offer valuable inspiration for designing multimodal soft grippers that can tackle diverse tasks in various environments. Similar to their biological counterparts, these grippers must adapt to dynamic working conditions to enhance their performance. This adaptation process involves multiple factors, including grasping mechanisms, structural design, materials, and application scenarios, with biomimetic strategies offering numerous innovative examples. Despite the significant potential of bio-inspired designs, it lacks comprehensive reviews that explore how these strategies can enhance the development of multimodal soft grippers. This review seeks to address this gap by providing a systematic review of how bioinspired approaches contribute to the advancement of multimodal grippers. It focuses on coupling strategies, integration methods, performance improvements, and application scenarios. Finally, the review explores how future biomimetic insights could address current challenges and further improve the functionality of multimodal grippers.

仿生多模态软夹持器:综述。
在自然界中,生物进化出了多种抓取机制,以执行狩猎和自卫等重要功能。这些经过时间考验的生物结构,包括章鱼的手臂和大象的鼻子,为设计能够在各种环境中处理各种任务的多模式软抓手提供了宝贵的灵感。与它们的生物对应物类似,这些抓手必须适应动态工作条件以提高其性能。这种适应过程涉及多种因素,包括抓握机制、结构设计、材料和应用场景,仿生策略提供了许多创新的例子。尽管仿生设计具有巨大的潜力,但它缺乏全面的综述,探讨这些策略如何促进多模态软夹持器的发展。本综述旨在通过提供生物启发方法如何促进多模态夹持器进步的系统综述来解决这一差距。它侧重于耦合策略、集成方法、性能改进和应用程序场景。最后,综述探讨了未来的仿生见解如何解决当前的挑战,并进一步改善多模态夹持器的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信