Jesus Jimenez, Junedh Amrute, Pan Ma, Xiaoran Wang, Shibali Das, Raymond Dai, Yohei Komaru, Andreas Herrlich, Matthias Mack, Kory J Lavine
{"title":"The immune checkpoint regulator CD40 potentiates myocardial inflammation.","authors":"Jesus Jimenez, Junedh Amrute, Pan Ma, Xiaoran Wang, Shibali Das, Raymond Dai, Yohei Komaru, Andreas Herrlich, Matthias Mack, Kory J Lavine","doi":"10.1038/s44161-025-00633-1","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint therapeutics including CD40 agonists have tremendous promise to elicit antitumor responses in patients resistant to current therapies. Conventional immune checkpoint inhibitors (PD-1, PD-L1 and CTLA-4 antagonists) are associated with serious adverse cardiac events including life-threatening myocarditis. However, little is known regarding the potential for CD40 agonists to trigger myocardial inflammation or myocarditis. Here we leverage genetic mouse models, single-cell sequencing and cell depletion studies to show that an anti-CD40 agonist antibody reshapes the cardiac immune landscape through activation of CCR2<sup>+</sup> macrophages and subsequent recruitment of effector memory CD8<sup>+</sup> T cells. We identify a positive feedback loop between CCR2<sup>+</sup> macrophages (positive for the chemokine receptor CCR2) and CD8<sup>+</sup> T cells driven by IL-12b, TNF and IFNγ signaling that promotes myocardial inflammation and show that previous exposure to CD40 agonists sensitizes the heart to secondary insults and accelerates left ventricular remodeling. Collectively, these findings highlight the potential for CD40 agonists to promote myocardial inflammation and potentiate heart failure pathogenesis.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 4","pages":"458-472"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00633-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint therapeutics including CD40 agonists have tremendous promise to elicit antitumor responses in patients resistant to current therapies. Conventional immune checkpoint inhibitors (PD-1, PD-L1 and CTLA-4 antagonists) are associated with serious adverse cardiac events including life-threatening myocarditis. However, little is known regarding the potential for CD40 agonists to trigger myocardial inflammation or myocarditis. Here we leverage genetic mouse models, single-cell sequencing and cell depletion studies to show that an anti-CD40 agonist antibody reshapes the cardiac immune landscape through activation of CCR2+ macrophages and subsequent recruitment of effector memory CD8+ T cells. We identify a positive feedback loop between CCR2+ macrophages (positive for the chemokine receptor CCR2) and CD8+ T cells driven by IL-12b, TNF and IFNγ signaling that promotes myocardial inflammation and show that previous exposure to CD40 agonists sensitizes the heart to secondary insults and accelerates left ventricular remodeling. Collectively, these findings highlight the potential for CD40 agonists to promote myocardial inflammation and potentiate heart failure pathogenesis.