Machine Learning Models for Predicting Type 2 Diabetes Complications in Malaysia.

IF 1.4 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Mohamad Zulfikrie Abas, Kezhi Li, Wan Yuen Choo, Kim Sui Wan, Noran Naqiah Hairi
{"title":"Machine Learning Models for Predicting Type 2 Diabetes Complications in Malaysia.","authors":"Mohamad Zulfikrie Abas, Kezhi Li, Wan Yuen Choo, Kim Sui Wan, Noran Naqiah Hairi","doi":"10.1177/10105395251332798","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop machine learning (ML) models to predict diabetic complications in patients with type 2 diabetes (T2D) in Malaysia. Data from the Malaysian National Diabetes Registry and Death Register were used to develop predictive models for five complications: all-cause mortality, retinopathy, nephropathy, ischemic heart disease (IHD), and cerebrovascular disease (CeVD). Accurate predictions may enable targeted preventive intervention and optimal disease management. The cohort comprised 90 933 T2D patients treated at public health clinics in southern Malaysia from 2011 to 2021. Seven ML algorithms were tested, with the Light Gradient Boosting Machine (LGBM) demonstrating the best performance. LGBM models achieved ROC-AUC scores of 0.84 for all-cause mortality, 0.71 for retinopathy, 0.71 for nephropathy, 0.66 for IHD, and 0.74 for CeVD. These findings support integrating ML models, particularly LGBM, into clinical practice for predicting diabetes complications. Further optimization and validation are necessary to enhance applicability across diverse populations.</p>","PeriodicalId":55570,"journal":{"name":"Asia-Pacific Journal of Public Health","volume":" ","pages":"10105395251332798"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10105395251332798","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to develop machine learning (ML) models to predict diabetic complications in patients with type 2 diabetes (T2D) in Malaysia. Data from the Malaysian National Diabetes Registry and Death Register were used to develop predictive models for five complications: all-cause mortality, retinopathy, nephropathy, ischemic heart disease (IHD), and cerebrovascular disease (CeVD). Accurate predictions may enable targeted preventive intervention and optimal disease management. The cohort comprised 90 933 T2D patients treated at public health clinics in southern Malaysia from 2011 to 2021. Seven ML algorithms were tested, with the Light Gradient Boosting Machine (LGBM) demonstrating the best performance. LGBM models achieved ROC-AUC scores of 0.84 for all-cause mortality, 0.71 for retinopathy, 0.71 for nephropathy, 0.66 for IHD, and 0.74 for CeVD. These findings support integrating ML models, particularly LGBM, into clinical practice for predicting diabetes complications. Further optimization and validation are necessary to enhance applicability across diverse populations.

预测马来西亚2型糖尿病并发症的机器学习模型。
本研究旨在开发机器学习(ML)模型来预测马来西亚2型糖尿病(T2D)患者的糖尿病并发症。来自马来西亚国家糖尿病登记处和死亡登记处的数据被用于开发五种并发症的预测模型:全因死亡率、视网膜病变、肾病、缺血性心脏病(IHD)和脑血管疾病(CeVD)。准确的预测可以实现有针对性的预防干预和最佳的疾病管理。该队列包括2011年至2021年在马来西亚南部公共卫生诊所接受治疗的90933名T2D患者。测试了七种机器学习算法,其中光梯度增强机(LGBM)表现出最好的性能。LGBM模型的全因死亡率ROC-AUC评分为0.84,视网膜病变为0.71,肾病为0.71,IHD为0.66,CeVD为0.74。这些发现支持将ML模型,特别是LGBM模型整合到预测糖尿病并发症的临床实践中。进一步的优化和验证是必要的,以提高在不同人群中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asia-Pacific Journal of Public Health
Asia-Pacific Journal of Public Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
4.00%
发文量
147
审稿时长
6 months
期刊介绍: Asia-Pacific Journal of Public Health (APJPH) is a peer-reviewed, bimonthly journal that focuses on health issues in the Asia-Pacific Region. APJPH publishes original articles on public health related issues, including implications for practical applications to professional education and services for public health and primary health care that are of concern and relevance to the Asia-Pacific region.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信