{"title":"A flexible Bayesian g-formula for causal survival analyses with time-dependent confounding.","authors":"Xinyuan Chen, Liangyuan Hu, Fan Li","doi":"10.1007/s10985-025-09652-3","DOIUrl":null,"url":null,"abstract":"<p><p>In longitudinal observational studies with time-to-event outcomes, a common objective in causal analysis is to estimate the causal survival curve under hypothetical intervention scenarios. The g-formula is a useful tool for this analysis. To enhance the traditional parametric g-formula, we developed an alternative g-formula estimator, which incorporates the Bayesian Additive Regression Trees into the modeling of the time-evolving generative components, aiming to mitigate the bias due to model misspecification. We focus on binary time-varying treatments and introduce a general class of g-formulas for discrete survival data that can incorporate longitudinal balancing scores. The minimum sufficient formulation of these longitudinal balancing scores is linked to the nature of treatment strategies, i.e., static or dynamic. For each type of treatment strategy, we provide posterior sampling algorithms. We conducted simulations to illustrate the empirical performance of the proposed method and demonstrate its practical utility using data from the Yale New Haven Health System's electronic health records.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"31 2","pages":"394-421"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09652-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In longitudinal observational studies with time-to-event outcomes, a common objective in causal analysis is to estimate the causal survival curve under hypothetical intervention scenarios. The g-formula is a useful tool for this analysis. To enhance the traditional parametric g-formula, we developed an alternative g-formula estimator, which incorporates the Bayesian Additive Regression Trees into the modeling of the time-evolving generative components, aiming to mitigate the bias due to model misspecification. We focus on binary time-varying treatments and introduce a general class of g-formulas for discrete survival data that can incorporate longitudinal balancing scores. The minimum sufficient formulation of these longitudinal balancing scores is linked to the nature of treatment strategies, i.e., static or dynamic. For each type of treatment strategy, we provide posterior sampling algorithms. We conducted simulations to illustrate the empirical performance of the proposed method and demonstrate its practical utility using data from the Yale New Haven Health System's electronic health records.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.