A flexible Bayesian g-formula for causal survival analyses with time-dependent confounding.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2025-04-01 Epub Date: 2025-04-14 DOI:10.1007/s10985-025-09652-3
Xinyuan Chen, Liangyuan Hu, Fan Li
{"title":"A flexible Bayesian g-formula for causal survival analyses with time-dependent confounding.","authors":"Xinyuan Chen, Liangyuan Hu, Fan Li","doi":"10.1007/s10985-025-09652-3","DOIUrl":null,"url":null,"abstract":"<p><p>In longitudinal observational studies with time-to-event outcomes, a common objective in causal analysis is to estimate the causal survival curve under hypothetical intervention scenarios. The g-formula is a useful tool for this analysis. To enhance the traditional parametric g-formula, we developed an alternative g-formula estimator, which incorporates the Bayesian Additive Regression Trees into the modeling of the time-evolving generative components, aiming to mitigate the bias due to model misspecification. We focus on binary time-varying treatments and introduce a general class of g-formulas for discrete survival data that can incorporate longitudinal balancing scores. The minimum sufficient formulation of these longitudinal balancing scores is linked to the nature of treatment strategies, i.e., static or dynamic. For each type of treatment strategy, we provide posterior sampling algorithms. We conducted simulations to illustrate the empirical performance of the proposed method and demonstrate its practical utility using data from the Yale New Haven Health System's electronic health records.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"31 2","pages":"394-421"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09652-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In longitudinal observational studies with time-to-event outcomes, a common objective in causal analysis is to estimate the causal survival curve under hypothetical intervention scenarios. The g-formula is a useful tool for this analysis. To enhance the traditional parametric g-formula, we developed an alternative g-formula estimator, which incorporates the Bayesian Additive Regression Trees into the modeling of the time-evolving generative components, aiming to mitigate the bias due to model misspecification. We focus on binary time-varying treatments and introduce a general class of g-formulas for discrete survival data that can incorporate longitudinal balancing scores. The minimum sufficient formulation of these longitudinal balancing scores is linked to the nature of treatment strategies, i.e., static or dynamic. For each type of treatment strategy, we provide posterior sampling algorithms. We conducted simulations to illustrate the empirical performance of the proposed method and demonstrate its practical utility using data from the Yale New Haven Health System's electronic health records.

一个灵活的贝叶斯g公式的因果生存分析与时间相关的混淆。
在具有时间到事件结果的纵向观察研究中,因果分析的一个共同目标是估计假设干预情景下的因果生存曲线。g公式对于这种分析是一个有用的工具。为了改进传统的参数g公式,我们开发了一种替代的g公式估计器,该估计器将贝叶斯加性回归树纳入到时间演化生成分量的建模中,旨在减轻由于模型错配引起的偏差。我们专注于二元时变处理,并为离散生存数据引入一般类别的g公式,可以纳入纵向平衡分数。这些纵向平衡分数的最小充分公式与治疗策略的性质有关,即静态或动态。对于每种类型的处理策略,我们提供了后验抽样算法。我们进行了模拟来说明所提出的方法的经验性能,并使用耶鲁大学纽黑文健康系统的电子健康记录数据来证明其实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信