Factors affecting the performance of a novel artificial intelligence-based coronary computed tomography-derived ischaemia algorithm.

European heart journal. Imaging methods and practice Pub Date : 2025-04-17 eCollection Date: 2024-10-01 DOI:10.1093/ehjimp/qyaf033
Peerapon Kiatkittikul, Teemu Maaniitty, Sarah Bär, Takeru Nabeta, Jeroen J Bax, Antti Saraste, Juhani Knuuti
{"title":"Factors affecting the performance of a novel artificial intelligence-based coronary computed tomography-derived ischaemia algorithm.","authors":"Peerapon Kiatkittikul, Teemu Maaniitty, Sarah Bär, Takeru Nabeta, Jeroen J Bax, Antti Saraste, Juhani Knuuti","doi":"10.1093/ehjimp/qyaf033","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>AI-QCT<sub>ischaemia</sub> is an FDA-cleared novel artificial intelligence-guided method that utilizes features from coronary computed tomography angiography (CCTA) to predict myocardial ischaemia.</p><p><strong>Objective: </strong>To identify factors associated with discrepancy between AI-QCT<sub>ischaemia</sub> and positron emission tomography (PET) perfusion.</p><p><strong>Methods and results: </strong>Six hundred and sixty-two patients with suspected obstructive coronary artery disease (CAD) on CCTA and undergoing [<sup>15</sup>O]H<sub>2</sub>O PET were analysed using AI-QCT<sub>ischaemia</sub>. Multivariable logistic regression identified factors associated with discrepancy. Perfusion homogeneity was measured by relative flow reserve. A total of 209 (32%) patients showed discrepancies: 62 (9%) exhibited normal AI-QCT<sub>ischaemia</sub> but abnormal perfusion (false negative AI-QCT<sub>ischaemia</sub>), whereas 147 (22%) had abnormal AI-QCT<sub>ischaemia</sub> despite normal perfusion (false positive AI-QCT<sub>ischaemia</sub>). False positive AI-QCT<sub>ischaemia</sub> patients (vs. true positive) were more often females, older, with less typical angina, and less advanced CAD. In multivariable analysis, typical angina [OR 95% CI: 1.796 (1.015-3.179), <i>P</i> = 0.044], diameter stenosis per 1% increase [1.058 (1.036-1.080), <i>P</i> < 0.001], and percent atheroma volume per 1% increase [1.103 (1.051-1.158), <i>P</i> < 0.001] significantly predicted true positive, while age was inversely associated [0.955 (0.923-0.989), <i>P</i> = 0.010]. False-negative AI-QCT<sub>ischaemia</sub> patients (vs. true negative) were more often males, smokers, with less good CCTA image quality, and more advanced CAD. However, none was significant in multivariable analysis. Furthermore, false-negative AI-QCT<sub>ischaemia</sub> showed more homogenously reduced perfusion by relative flow reserve compared to true positive (median ± IQR: 0.68 ± 0.15 vs. 0.56 ± 0.23, <i>P</i> < 0.001) and 21 (34%) of false negative showed globally reduced perfusion.</p><p><strong>Conclusion: </strong>For abnormal AI-QCT<sub>ischaemia</sub>, younger age, typical angina, more severe stenosis, and more extensive atherosclerosis predicted abnormal PET perfusion. With false negative AI-QCT<sub>ischaemia</sub>, perfusion abnormalities were partly explained by microvascular disease.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"2 4","pages":"qyaf033"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: AI-QCTischaemia is an FDA-cleared novel artificial intelligence-guided method that utilizes features from coronary computed tomography angiography (CCTA) to predict myocardial ischaemia.

Objective: To identify factors associated with discrepancy between AI-QCTischaemia and positron emission tomography (PET) perfusion.

Methods and results: Six hundred and sixty-two patients with suspected obstructive coronary artery disease (CAD) on CCTA and undergoing [15O]H2O PET were analysed using AI-QCTischaemia. Multivariable logistic regression identified factors associated with discrepancy. Perfusion homogeneity was measured by relative flow reserve. A total of 209 (32%) patients showed discrepancies: 62 (9%) exhibited normal AI-QCTischaemia but abnormal perfusion (false negative AI-QCTischaemia), whereas 147 (22%) had abnormal AI-QCTischaemia despite normal perfusion (false positive AI-QCTischaemia). False positive AI-QCTischaemia patients (vs. true positive) were more often females, older, with less typical angina, and less advanced CAD. In multivariable analysis, typical angina [OR 95% CI: 1.796 (1.015-3.179), P = 0.044], diameter stenosis per 1% increase [1.058 (1.036-1.080), P < 0.001], and percent atheroma volume per 1% increase [1.103 (1.051-1.158), P < 0.001] significantly predicted true positive, while age was inversely associated [0.955 (0.923-0.989), P = 0.010]. False-negative AI-QCTischaemia patients (vs. true negative) were more often males, smokers, with less good CCTA image quality, and more advanced CAD. However, none was significant in multivariable analysis. Furthermore, false-negative AI-QCTischaemia showed more homogenously reduced perfusion by relative flow reserve compared to true positive (median ± IQR: 0.68 ± 0.15 vs. 0.56 ± 0.23, P < 0.001) and 21 (34%) of false negative showed globally reduced perfusion.

Conclusion: For abnormal AI-QCTischaemia, younger age, typical angina, more severe stenosis, and more extensive atherosclerosis predicted abnormal PET perfusion. With false negative AI-QCTischaemia, perfusion abnormalities were partly explained by microvascular disease.

一种基于人工智能的新型冠状动脉计算机断层扫描衍生缺血算法的影响因素。
目的:AI-QCTischaemia是一种经fda批准的新型人工智能引导方法,利用冠状动脉计算机断层血管造影(CCTA)的特征来预测心肌缺血。目的:探讨AI-QCTischaemia与正电子发射断层扫描(PET)灌注差异的相关因素。方法与结果:采用AI-QCTischaemia对662例经CCTA检查并行[15O]H2O PET检查的疑似冠状动脉阻塞性疾病(CAD)患者进行分析。多变量逻辑回归确定了与差异相关的因素。采用相对流量储备法测定灌注均匀性。共有209例(32%)患者存在差异:62例(9%)患者表现为AI-QCTischaemia正常,但灌注异常(假阴性AI-QCTischaemia), 147例(22%)患者表现为AI-QCTischaemia异常,但灌注正常(假阳性AI-QCTischaemia)。AI-QCTischaemia假阳性患者(与真阳性相比)多为女性,年龄较大,不太典型的心绞痛,不太严重的CAD。在多变量分析中,典型心绞痛[OR 95% CI: 1.796 (1.015-3.179), P = 0.044]、狭窄直径每增加1% [1.058 (1.036-1.080),P < 0.001]、动脉粥样硬化体积百分比每增加1% [1.103 (1.051-1.158),P < 0.001]与真阳性有显著相关性,而年龄呈负相关[0.955 (0.923-0.989),P = 0.010]。假阴性AI-QCTischaemia患者(与真阴性患者相比)多为男性、吸烟者、CCTA图像质量较差、CAD较晚期。然而,在多变量分析中没有显著性。此外,与真阳性相比,假阴性AI-QCTischaemia的相对血流储备表现出更均匀的灌注减少(中位数±IQR: 0.68±0.15 vs 0.56±0.23,P < 0.001), 21例(34%)假阴性患者表现出整体灌注减少。结论:对于AI-QCTischaemia异常,年龄越小、心绞痛越典型、狭窄越严重、动脉粥样硬化越广泛预示着PET灌注异常。AI-QCTischaemia假阴性时,微血管病变部分解释了灌注异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信