Changing paradigms for the micronutrient zinc, a known protein cofactor, as a signal relaying also cellular redox state.

Quantitative plant biology Pub Date : 2025-04-02 eCollection Date: 2025-01-01 DOI:10.1017/qpb.2025.4
Ute Krämer
{"title":"Changing paradigms for the micronutrient zinc, a known protein cofactor, as a signal relaying also cellular redox state.","authors":"Ute Krämer","doi":"10.1017/qpb.2025.4","DOIUrl":null,"url":null,"abstract":"<p><p>The micronutrient zinc (Zn) is often poorly available but toxic when present in excess, so a tightly controlled Zn homoeostasis network operates in all organisms. This review summarizes our present understanding of plant Zn homoeostasis. In <i>Arabidopsis</i>, about 1,900 Zn-binding metalloproteins require Zn as a cofactor. Abundant Zn metalloproteins reside in plastids, mitochondria and peroxisomes, emphasizing the need to address how Zn reaches these proteins. Apo-Zn metalloproteins do not acquire Zn<sup>2+</sup> from a cytosolic pool of free cations, but instead through associative ligand exchange from Zn-buffering molecules. The importance of cytosolic thiols in Zn buffering suggests that, besides elevated Zn influx, a more oxidized redox state is also predicted to cause elevated labile-bound Zn levels, consistent with the suppression of a Zn deficiency marker under oxidative stress. Therefore, we consider a broadened physiological scope in plants for a possible signalling role of Zn<sup>2+</sup>, experimentally supported only in animals to date.</p>","PeriodicalId":101358,"journal":{"name":"Quantitative plant biology","volume":"6 ","pages":"e7"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative plant biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2025.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The micronutrient zinc (Zn) is often poorly available but toxic when present in excess, so a tightly controlled Zn homoeostasis network operates in all organisms. This review summarizes our present understanding of plant Zn homoeostasis. In Arabidopsis, about 1,900 Zn-binding metalloproteins require Zn as a cofactor. Abundant Zn metalloproteins reside in plastids, mitochondria and peroxisomes, emphasizing the need to address how Zn reaches these proteins. Apo-Zn metalloproteins do not acquire Zn2+ from a cytosolic pool of free cations, but instead through associative ligand exchange from Zn-buffering molecules. The importance of cytosolic thiols in Zn buffering suggests that, besides elevated Zn influx, a more oxidized redox state is also predicted to cause elevated labile-bound Zn levels, consistent with the suppression of a Zn deficiency marker under oxidative stress. Therefore, we consider a broadened physiological scope in plants for a possible signalling role of Zn2+, experimentally supported only in animals to date.

改变范式的微量营养素锌,一种已知的蛋白质辅助因子,作为信号传递也细胞氧化还原状态。
微量元素锌(Zn)通常缺乏,但过量存在时是有毒的,因此在所有生物体中都有一个严格控制的锌平衡网络。本文综述了目前对植物锌稳态的认识。在拟南芥中,约1900种锌结合金属蛋白需要锌作为辅助因子。丰富的锌金属蛋白存在于质体、线粒体和过氧化物酶体中,强调了解决锌如何到达这些蛋白的必要性。载锌金属蛋白不从胞质池的自由阳离子中获得Zn2+,而是通过与锌缓冲分子的结合配体交换获得。胞质硫醇在锌缓冲中的重要性表明,除了锌流入升高外,更氧化的氧化还原状态也预计会导致不稳定结合锌水平升高,这与氧化应激下锌缺乏症标志物的抑制一致。因此,我们认为Zn2+在植物中可能的信号作用的生理范围更广,迄今为止实验只在动物中得到支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信