Artificial intelligence-driven clinical decision support systems for early detection and precision therapy in oral cancer: a mini review.

IF 3 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Frontiers in oral health Pub Date : 2025-04-28 eCollection Date: 2025-01-01 DOI:10.3389/froh.2025.1592428
Manoj Kumar Karuppan Perumal, Remya Rajan Renuka, Suresh Kumar Subbiah, Prabhu Manickam Natarajan
{"title":"Artificial intelligence-driven clinical decision support systems for early detection and precision therapy in oral cancer: a mini review.","authors":"Manoj Kumar Karuppan Perumal, Remya Rajan Renuka, Suresh Kumar Subbiah, Prabhu Manickam Natarajan","doi":"10.3389/froh.2025.1592428","DOIUrl":null,"url":null,"abstract":"<p><p>Oral cancer (OC) is a significant global health burden, with life-saving improvements in survival and outcomes being dependent on early diagnosis and precise treatment planning. However, diagnosis and treatment planning are predicated on the synthesis of complicated information derived from clinical assessment, imaging, histopathology and patient histories. Artificial intelligence-based clinical decision support systems (AI-CDSS) provides a viable solution that can be implemented via advanced methodologies for data analysis, and synthesis for better diagnostic and prognostic evaluation. This review presents AI-CDSS as a promising solution through advanced methodologies for comprehensive data analysis. In addition, it examines current implementations of AI-CDSS that facilitate early OC detection, precise staging, and personalized treatment planning by processing multimodal patient information through machine learning, computer vision, and natural language processing. These systems effectively interpret clinical results, identify critical disease patterns (including clinical stage, site, tumor dimensions, histopathologic grading, and molecular profiles), and construct comprehensive patient profiles. This comprehensive AI-CDSS approach allows for early cancer detection, a reduction in diagnostic delays and improved intervention outcomes. Moreover, the AI-CDSS also optimizes treatment plans on the basis of unique patient parameters, tumor stages and risk factors, providing personalized therapy.</p>","PeriodicalId":94016,"journal":{"name":"Frontiers in oral health","volume":"6 ","pages":"1592428"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066789/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in oral health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/froh.2025.1592428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Oral cancer (OC) is a significant global health burden, with life-saving improvements in survival and outcomes being dependent on early diagnosis and precise treatment planning. However, diagnosis and treatment planning are predicated on the synthesis of complicated information derived from clinical assessment, imaging, histopathology and patient histories. Artificial intelligence-based clinical decision support systems (AI-CDSS) provides a viable solution that can be implemented via advanced methodologies for data analysis, and synthesis for better diagnostic and prognostic evaluation. This review presents AI-CDSS as a promising solution through advanced methodologies for comprehensive data analysis. In addition, it examines current implementations of AI-CDSS that facilitate early OC detection, precise staging, and personalized treatment planning by processing multimodal patient information through machine learning, computer vision, and natural language processing. These systems effectively interpret clinical results, identify critical disease patterns (including clinical stage, site, tumor dimensions, histopathologic grading, and molecular profiles), and construct comprehensive patient profiles. This comprehensive AI-CDSS approach allows for early cancer detection, a reduction in diagnostic delays and improved intervention outcomes. Moreover, the AI-CDSS also optimizes treatment plans on the basis of unique patient parameters, tumor stages and risk factors, providing personalized therapy.

人工智能驱动的临床决策支持系统用于口腔癌的早期检测和精确治疗:一个小综述。
口腔癌(OC)是一项重大的全球健康负担,挽救生命的生存和结果的改善取决于早期诊断和精确的治疗计划。然而,诊断和治疗计划是基于来自临床评估、影像学、组织病理学和患者病史的复杂信息的综合。基于人工智能的临床决策支持系统(AI-CDSS)提供了一种可行的解决方案,可以通过先进的数据分析和综合方法来实施,从而更好地进行诊断和预后评估。这篇综述介绍了AI-CDSS作为一个有前途的解决方案,通过先进的方法进行全面的数据分析。此外,它还研究了AI-CDSS的当前实施,通过机器学习、计算机视觉和自然语言处理处理多模式患者信息,促进早期OC检测、精确分期和个性化治疗计划。这些系统有效地解释临床结果,识别关键疾病模式(包括临床分期、部位、肿瘤尺寸、组织病理分级和分子谱),并构建全面的患者档案。这种全面的AI-CDSS方法可以早期发现癌症,减少诊断延误,改善干预结果。此外,AI-CDSS还根据独特的患者参数、肿瘤分期和危险因素优化治疗方案,提供个性化治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信