Stochastic Signal Processing Based Stimulation Artifact Cancellation in $\Delta\Sigma$ Neural Frontend

IF 4.9
Gayas Mohiuddin Sayed;Armin Bartels;Daniel De Dorigo;Tim Fleiner;Nicole Rosskothen-Kuhl;Matthias Kuhl
{"title":"Stochastic Signal Processing Based Stimulation Artifact Cancellation in $\\Delta\\Sigma$ Neural Frontend","authors":"Gayas Mohiuddin Sayed;Armin Bartels;Daniel De Dorigo;Tim Fleiner;Nicole Rosskothen-Kuhl;Matthias Kuhl","doi":"10.1109/TBCAS.2025.3563684","DOIUrl":null,"url":null,"abstract":"This paper presents a neural recorder frontend featuring electrical stimulation artifact cancellation by employing an adaptive LMS filter in the stochastic domain. The recording system comprises of a low-noise analog frontend and a 1<sup>st</sup>-order <inline-formula><tex-math>$\\Delta\\Sigma$</tex-math></inline-formula> modulator. A power-efficient stochastic signal processor, occupying an area of 0.12 mm<sup>2</sup>, processes the <inline-formula><tex-math>$\\Delta\\Sigma$</tex-math></inline-formula> modulator output bitstream to learn and compensate for artifacts induced by concurrent electrical stimulation. The proposed approach, validated on a prototype ASIC fabricated in 180 nm CMOS technology, has a total power consumption of 6.83 <inline-formula><tex-math>$\\boldsymbol{\\mu}$</tex-math></inline-formula>W, with the stochastic signal processor consuming only 0.51 <inline-formula><tex-math>$\\boldsymbol{\\mu}$</tex-math></inline-formula>W. Experimental results demonstrate that the system effectively suppresses peak-to-peak stimulation artifacts of 200 mV by approximately 33 dB over a 10 kHz bandwidth, establishing it as a novel state-of-the-art real-time artifact cancellation system. Furthermore, in-vitro validation for both biphasic and monophasic stimulation confirms its efficacy, with 74.3 mVpp artifacts from biphasic stimulation being attenuated by 25 dB.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 4","pages":"701-711"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10974628/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a neural recorder frontend featuring electrical stimulation artifact cancellation by employing an adaptive LMS filter in the stochastic domain. The recording system comprises of a low-noise analog frontend and a 1st-order $\Delta\Sigma$ modulator. A power-efficient stochastic signal processor, occupying an area of 0.12 mm2, processes the $\Delta\Sigma$ modulator output bitstream to learn and compensate for artifacts induced by concurrent electrical stimulation. The proposed approach, validated on a prototype ASIC fabricated in 180 nm CMOS technology, has a total power consumption of 6.83 $\boldsymbol{\mu}$W, with the stochastic signal processor consuming only 0.51 $\boldsymbol{\mu}$W. Experimental results demonstrate that the system effectively suppresses peak-to-peak stimulation artifacts of 200 mV by approximately 33 dB over a 10 kHz bandwidth, establishing it as a novel state-of-the-art real-time artifact cancellation system. Furthermore, in-vitro validation for both biphasic and monophasic stimulation confirms its efficacy, with 74.3 mVpp artifacts from biphasic stimulation being attenuated by 25 dB.
基于随机信号处理的ΔΣ神经前端刺激伪影消除。
本文提出了一种采用随机域自适应LMS滤波器消除电刺激伪影的神经记录器前端。记录系统包括低噪声模拟前端和一阶ΔΣ调制器。一个节能的随机信号处理器,占用0.12 mm2的面积,处理ΔΣ调制器输出比特流,以学习和补偿并发电刺激引起的伪影。该方法在180nm CMOS工艺的ASIC原型上得到验证,总功耗为6.83 μW,随机信号处理器功耗仅为0.51 μW。实验结果表明,该系统在10 kHz带宽内有效抑制200 mV的峰对峰刺激伪影约33 dB,使其成为一种新型的最先进的实时伪影消除系统。此外,双相和单相刺激的体外验证证实了其有效性,双相刺激产生的74.3 mVpp伪影被减弱了25 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信