{"title":"Detectable episodic positive selection in the virion strand a-strain Maize streak virus genes may have a role in its host adaptation.","authors":"Kehinde A Oyeniran, Mobolaji O Tenibiaje","doi":"10.1007/s11262-025-02157-z","DOIUrl":null,"url":null,"abstract":"<p><p>Maize streak virus (MSV) has four genes: cp, encoding the coat protein; mp, the movement protein; and repA and rep, encoding two distinct replication-associated proteins from an alternatively spliced transcript. These genes play roles in encapsidation, movement, replication, and interactions with the external environment, making them prone to stimuli-driven molecular adaptation. We accomplished selection studies on publicly available curated, recombination-free, complete coding sequences for representative A-strain maize streak virus (MSV-A) cp and mp genes. We found evidence of gene-wide selection in these two MSV genes at specific sites within the genes (cp 1.23% and mp 0.99%). Positively selected sites have amino acids that are 60% hydrophilic and 40% hydrophobic in nature. We found significant evidence of positive selection at branches (cp: 0.76 and mp:1.66%) representing the diversity of MSV-A-strain in South Africa, which is related to the MSV-A-matA isolate (GenBank accession number: AF329881), well disseminated and adapted to the maize plant in sub-Saharan Africa. In the mp gene, selection significantly intensified for the overall diversities of the MSV-A sequences and those more related to the MSV-Mat-A isolate. These findings reveal that despite predominantly undergoing non-diversifying selection, the detectable diversifying positive selection observed in these genes may play a major role in MSV-A host adaptive evolution, ensuring sufficient pathogenicity for onward transmission without killing the host.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02157-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Maize streak virus (MSV) has four genes: cp, encoding the coat protein; mp, the movement protein; and repA and rep, encoding two distinct replication-associated proteins from an alternatively spliced transcript. These genes play roles in encapsidation, movement, replication, and interactions with the external environment, making them prone to stimuli-driven molecular adaptation. We accomplished selection studies on publicly available curated, recombination-free, complete coding sequences for representative A-strain maize streak virus (MSV-A) cp and mp genes. We found evidence of gene-wide selection in these two MSV genes at specific sites within the genes (cp 1.23% and mp 0.99%). Positively selected sites have amino acids that are 60% hydrophilic and 40% hydrophobic in nature. We found significant evidence of positive selection at branches (cp: 0.76 and mp:1.66%) representing the diversity of MSV-A-strain in South Africa, which is related to the MSV-A-matA isolate (GenBank accession number: AF329881), well disseminated and adapted to the maize plant in sub-Saharan Africa. In the mp gene, selection significantly intensified for the overall diversities of the MSV-A sequences and those more related to the MSV-Mat-A isolate. These findings reveal that despite predominantly undergoing non-diversifying selection, the detectable diversifying positive selection observed in these genes may play a major role in MSV-A host adaptive evolution, ensuring sufficient pathogenicity for onward transmission without killing the host.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.