{"title":"Research on Dynamic Outpatient Respiratory Nosocomial Infection Control Methods Through Multi-Data Prediction.","authors":"Yuncong Wang, Wenhui Ma, Yang Yang, Huijie Zhao, Zhongjing Zhao, Xia Zhao","doi":"10.2147/RMHP.S508760","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop a dynamic prevention and control method for fluctuating respiratory nosocomial infections in outpatients.</p><p><strong>Methods: </strong>Six sets of surveillance data such as influenza-like case counts and their predicted results were used in the autoregressive integrated moving average model (ARIMA) to forecast the onset and end time points of the epidemic peak. A Delphi process was then used to build consensus on hierarchical infection control measures for epidemic peaks and plateaus. The data, predicted results, and hierarchical infection control measures can assist dynamic prevention and control of respiratory nosocomial infections with changes in the infection risk.</p><p><strong>Results: </strong>The ARIMA model produced exact estimates. The mean absolute percentage errors (MAPE) of the data selected to estimate the time range of the high-risk and low-risk periods were 15.8%, 9.2%, 15.4%, 16.8%, 25.6%. The hierarchical infection control measures included three categories and nine key points. A risk-period judgment matrix was also designed to connect the surveillance data and the hierarchical infection control measures.</p><p><strong>Conclusion: </strong>Through a mathematical model, dynamic prevention and control of respiratory tract infections in outpatients was constructed based on the daily medical service monitoring data of hospitals. It is foreseeable that when applied in medical institutions, this method will provide accurate and low-cost infection prevention and control outcomes.</p>","PeriodicalId":56009,"journal":{"name":"Risk Management and Healthcare Policy","volume":"18 ","pages":"1323-1332"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009034/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management and Healthcare Policy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S508760","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to develop a dynamic prevention and control method for fluctuating respiratory nosocomial infections in outpatients.
Methods: Six sets of surveillance data such as influenza-like case counts and their predicted results were used in the autoregressive integrated moving average model (ARIMA) to forecast the onset and end time points of the epidemic peak. A Delphi process was then used to build consensus on hierarchical infection control measures for epidemic peaks and plateaus. The data, predicted results, and hierarchical infection control measures can assist dynamic prevention and control of respiratory nosocomial infections with changes in the infection risk.
Results: The ARIMA model produced exact estimates. The mean absolute percentage errors (MAPE) of the data selected to estimate the time range of the high-risk and low-risk periods were 15.8%, 9.2%, 15.4%, 16.8%, 25.6%. The hierarchical infection control measures included three categories and nine key points. A risk-period judgment matrix was also designed to connect the surveillance data and the hierarchical infection control measures.
Conclusion: Through a mathematical model, dynamic prevention and control of respiratory tract infections in outpatients was constructed based on the daily medical service monitoring data of hospitals. It is foreseeable that when applied in medical institutions, this method will provide accurate and low-cost infection prevention and control outcomes.
期刊介绍:
Risk Management and Healthcare Policy is an international, peer-reviewed, open access journal focusing on all aspects of public health, policy and preventative measures to promote good health and improve morbidity and mortality in the population. Specific topics covered in the journal include:
Public and community health
Policy and law
Preventative and predictive healthcare
Risk and hazard management
Epidemiology, detection and screening
Lifestyle and diet modification
Vaccination and disease transmission/modification programs
Health and safety and occupational health
Healthcare services provision
Health literacy and education
Advertising and promotion of health issues
Health economic evaluations and resource management
Risk Management and Healthcare Policy focuses on human interventional and observational research. The journal welcomes submitted papers covering original research, clinical and epidemiological studies, reviews and evaluations, guidelines, expert opinion and commentary, and extended reports. Case reports will only be considered if they make a valuable and original contribution to the literature. The journal does not accept study protocols, animal-based or cell line-based studies.