A low-cost FPGA-based approach for pile-up corrected high-speed in vivo FLIM imaging.

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-04-01 Epub Date: 2025-05-05 DOI:10.1117/1.NPh.12.2.025009
Felipe Velasquez Moros, Dorian Amiet, Rachel M Meister, Alexandra von Faber-Castell, Matthias Wyss, Aiman S Saab, Paul Zbinden, Bruno Weber, Luca Ravotto
{"title":"A low-cost FPGA-based approach for pile-up corrected high-speed <i>in vivo</i> FLIM imaging.","authors":"Felipe Velasquez Moros, Dorian Amiet, Rachel M Meister, Alexandra von Faber-Castell, Matthias Wyss, Aiman S Saab, Paul Zbinden, Bruno Weber, Luca Ravotto","doi":"10.1117/1.NPh.12.2.025009","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Intensity-based two-photon microscopy is a cornerstone of neuroscience research but lacks the ability to measure concentrations, a pivotal task for longitudinal studies and quantitative comparisons. Fluorescence lifetime imaging (FLIM) based on time-correlated single photon counting (TCSPC) can overcome those limits but suffers from \"pile-up\" distortions at high photon count rates, severely limiting acquisition speed.</p><p><strong>Aim: </strong>We introduce the \"laser period blind time\" (LPBT) method to correct pile-up distortions in photon counting electronics, enabling reliable low-cost TCSPC-FLIM at high count rates.</p><p><strong>Approach: </strong>Using a realistic simulation of the TCSPC data collection, we evaluated the LPBT method's performance <i>in silico</i>. The correction was then implemented on low-cost hardware based on a field programable gate array and validated using <i>in vitro</i>, <i>ex vivo</i>, and <i>in vivo</i> measurements.</p><p><strong>Results: </strong>The LBPT approach achieves <math><mrow><mo><</mo> <mn>3</mn> <mo>%</mo></mrow> </math> error in lifetime measurements at count rates more than 10 times higher than traditional limits, allowing robust FLIM imaging of subsecond metabolite dynamics with subcellular resolution.</p><p><strong>Conclusions: </strong>We enable high-precision, cost-effective FLIM imaging at acquisition speeds comparable with state-of-the-art commercial systems, facilitating the adoption of FLIM in neuroscience and other fields of research needing robust quantitative live imaging solutions.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 2","pages":"025009"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.2.025009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Intensity-based two-photon microscopy is a cornerstone of neuroscience research but lacks the ability to measure concentrations, a pivotal task for longitudinal studies and quantitative comparisons. Fluorescence lifetime imaging (FLIM) based on time-correlated single photon counting (TCSPC) can overcome those limits but suffers from "pile-up" distortions at high photon count rates, severely limiting acquisition speed.

Aim: We introduce the "laser period blind time" (LPBT) method to correct pile-up distortions in photon counting electronics, enabling reliable low-cost TCSPC-FLIM at high count rates.

Approach: Using a realistic simulation of the TCSPC data collection, we evaluated the LPBT method's performance in silico. The correction was then implemented on low-cost hardware based on a field programable gate array and validated using in vitro, ex vivo, and in vivo measurements.

Results: The LBPT approach achieves < 3 % error in lifetime measurements at count rates more than 10 times higher than traditional limits, allowing robust FLIM imaging of subsecond metabolite dynamics with subcellular resolution.

Conclusions: We enable high-precision, cost-effective FLIM imaging at acquisition speeds comparable with state-of-the-art commercial systems, facilitating the adoption of FLIM in neuroscience and other fields of research needing robust quantitative live imaging solutions.

一种基于fpga的低成本堆积校正高速体内FLIM成像方法。
意义:基于强度的双光子显微镜是神经科学研究的基石,但缺乏测量浓度的能力,这是纵向研究和定量比较的关键任务。基于时间相关单光子计数(TCSPC)的荧光寿命成像(FLIM)可以克服这些限制,但在高光子计数率下存在“堆积”畸变,严重限制了采集速度。目的:我们引入“激光周期盲时间”(lbt)方法来纠正光子计数电子学中的堆积畸变,实现高计数率下可靠的低成本TCSPC-FLIM。方法:利用TCSPC数据收集的真实模拟,我们在计算机上评估了LPBT方法的性能。然后在基于现场可编程门阵列的低成本硬件上实施校正,并使用体外、离体和体内测量进行验证。结果:LBPT方法在寿命测量中达到3%的误差,计数率比传统限制高10倍以上,允许以亚细胞分辨率对亚秒代谢物动力学进行稳健的FLIM成像。结论:我们能够以与最先进的商业系统相当的采集速度实现高精度,具有成本效益的FLIM成像,促进FLIM在神经科学和其他需要强大定量实时成像解决方案的研究领域的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信