Scalable image-based visualization and alignment of spatial transcriptomics datasets.

Stephan Preibisch, Michael Innerberger, Daniel León-Periñán, Nikos Karaiskos, Nikolaus Rajewsky
{"title":"Scalable image-based visualization and alignment of spatial transcriptomics datasets.","authors":"Stephan Preibisch, Michael Innerberger, Daniel León-Periñán, Nikos Karaiskos, Nikolaus Rajewsky","doi":"10.1016/j.cels.2025.101264","DOIUrl":null,"url":null,"abstract":"<p><p>We present the \"spatial transcriptomics imaging framework\" (STIM), an imaging-based computational framework focused on visualizing and aligning high-throughput spatial sequencing datasets. STIM is built on the powerful, scalable ImgLib2 and BigDataViewer (BDV) image data frameworks and thus enables novel development or transfer of existing computer vision techniques to the sequencing domain characterized by datasets with irregular measurement-spacing and arbitrary spatial resolution, such as spatial transcriptomics data generated by multiplexed targeted hybridization or spatial sequencing technologies. We illustrate STIM's capabilities by representing, interactively visualizing, 3D rendering, automatically registering, and segmenting publicly available spatial sequencing data from 13 serial sections of mouse brain tissue and from 19 sections of a human metastatic lymph node. We demonstrate that the simplest alignment mode of STIM achieves human-level accuracy.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101264"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the "spatial transcriptomics imaging framework" (STIM), an imaging-based computational framework focused on visualizing and aligning high-throughput spatial sequencing datasets. STIM is built on the powerful, scalable ImgLib2 and BigDataViewer (BDV) image data frameworks and thus enables novel development or transfer of existing computer vision techniques to the sequencing domain characterized by datasets with irregular measurement-spacing and arbitrary spatial resolution, such as spatial transcriptomics data generated by multiplexed targeted hybridization or spatial sequencing technologies. We illustrate STIM's capabilities by representing, interactively visualizing, 3D rendering, automatically registering, and segmenting publicly available spatial sequencing data from 13 serial sections of mouse brain tissue and from 19 sections of a human metastatic lymph node. We demonstrate that the simplest alignment mode of STIM achieves human-level accuracy.

可扩展的基于图像的可视化和空间转录组学数据集的对齐。
我们提出了“空间转录组学成像框架”(STIM),这是一个基于成像的计算框架,专注于可视化和对齐高通量空间测序数据集。STIM是建立在强大的,可扩展的ImgLib2和BigDataViewer (BDV)图像数据框架上的,因此能够将现有计算机视觉技术的新开发或转移到以不规则测量间距和任意空间分辨率的数据集为特征的测序领域,例如由多路靶向杂交或空间测序技术生成的空间转录组学数据。我们通过表示、交互式可视化、3D渲染、自动注册和分割来自13个小鼠脑组织序列切片和19个人类转移性淋巴结切片的公开可用空间测序数据来说明STIM的能力。我们证明了最简单的STIM对准模式达到了人类水平的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信