Single-cell sequencing reveals alterations in the ovarian immune microenvironment regulated by 17β-estradiol in neonatal mice.

IF 4.7 1区 生物学 Q1 ZOOLOGY
Yu-Tong Yan, Yan-Xue Li, Yi-Ting Meng, Qian Li, Xiao-E Zhao, Qiang Wei, Meng-Hao Pan, Sha Peng, Bao-Hua Ma
{"title":"Single-cell sequencing reveals alterations in the ovarian immune microenvironment regulated by 17β-estradiol in neonatal mice.","authors":"Yu-Tong Yan, Yan-Xue Li, Yi-Ting Meng, Qian Li, Xiao-E Zhao, Qiang Wei, Meng-Hao Pan, Sha Peng, Bao-Hua Ma","doi":"10.24272/j.issn.2095-8137.2024.355","DOIUrl":null,"url":null,"abstract":"<p><p>The immunomodulatory function of estrogen within the ovary remains a subject of ongoing debate, and the neonatal ovarian immune microenvironment, particularly its modulation by estrogen, has not been comprehensively characterized. In this study, the effects of 17β-estradiol (E <sub>2</sub>), a key regulator of immune function, were investigated using single-cell transcriptomic profiling of C57BL/6J neonatal mouse ovaries after E <sub>2</sub> treatment. Results revealed dynamic alterations in the proportion of immune cell types after E <sub>2</sub> treatment, accompanied by changes in cytokine and chemokine expression. Detailed analyses of gene expression, cell states, and developmental trajectories across distinct cell types indicated that E <sub>2</sub> treatment influenced cell differentiation and development. Notably, E <sub>2</sub> treatment reduced the abundance of macrophages and promoted a phenotypic transition from M1 to M2 macrophages. These findings demonstrate that the neonatal mouse ovarian immune microenvironment is sensitive to estrogenic modulation, which governs both the distribution and functional specialization of resident immune cells, offering novel mechanistic insights into the immunomodulatory roles of estrogen across various immune cell types.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"618-633"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.355","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The immunomodulatory function of estrogen within the ovary remains a subject of ongoing debate, and the neonatal ovarian immune microenvironment, particularly its modulation by estrogen, has not been comprehensively characterized. In this study, the effects of 17β-estradiol (E 2), a key regulator of immune function, were investigated using single-cell transcriptomic profiling of C57BL/6J neonatal mouse ovaries after E 2 treatment. Results revealed dynamic alterations in the proportion of immune cell types after E 2 treatment, accompanied by changes in cytokine and chemokine expression. Detailed analyses of gene expression, cell states, and developmental trajectories across distinct cell types indicated that E 2 treatment influenced cell differentiation and development. Notably, E 2 treatment reduced the abundance of macrophages and promoted a phenotypic transition from M1 to M2 macrophages. These findings demonstrate that the neonatal mouse ovarian immune microenvironment is sensitive to estrogenic modulation, which governs both the distribution and functional specialization of resident immune cells, offering novel mechanistic insights into the immunomodulatory roles of estrogen across various immune cell types.

单细胞测序揭示了17β-雌二醇调节的新生小鼠卵巢免疫微环境的变化。
雌激素在卵巢内的免疫调节功能仍然是一个持续争论的主题,新生儿卵巢免疫微环境,特别是雌激素对其的调节,尚未得到全面的表征。本研究通过对C57BL/6J新生小鼠卵巢进行e2处理后的单细胞转录组学分析,研究了e2对免疫功能关键调节因子17β-雌二醇(e2)的影响。结果显示e2治疗后免疫细胞类型比例发生动态变化,并伴有细胞因子和趋化因子表达的变化。对不同细胞类型的基因表达、细胞状态和发育轨迹的详细分析表明,e2处理影响细胞分化和发育。值得注意的是,e2处理降低了巨噬细胞的丰度,并促进了从M1到M2巨噬细胞的表型转变。这些发现表明,新生小鼠卵巢免疫微环境对雌激素调节敏感,雌激素调节常驻免疫细胞的分布和功能特化,为雌激素在各种免疫细胞类型中的免疫调节作用提供了新的机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信