Magnetically actuatable 3D-printed endoscopic microsystems.

Florian Rothermel, Andrea Toulouse, Simon Thiele, Chris Jung, Johannes Drozella, Robert Steinhoff, Harald Giessen, Alois M Herkommer
{"title":"Magnetically actuatable 3D-printed endoscopic microsystems.","authors":"Florian Rothermel, Andrea Toulouse, Simon Thiele, Chris Jung, Johannes Drozella, Robert Steinhoff, Harald Giessen, Alois M Herkommer","doi":"10.1038/s44172-025-00403-8","DOIUrl":null,"url":null,"abstract":"<p><p>In endoscopy, there is a crucial demand for compact system designs to allow for imaging in narrow spaces and reduce the risk of damage during endoscopic procedures. Enhanced functionality of lensed endoscopes can be realized by integrating actuatable imaging systems with flexible fiber bundles. Conventionally fabricated actuatable endoscopes are, however, limited in their miniaturization capability, typically resulting in system diameters greater than 1 mm. In this work, we present highly compact magnetically actuatable 3D-printed and endoscopically integrated microsystems that are fabricated on the end-facet of imaging fiber bundles using two-photon polymerization. Electromagnetic microcoils affixed to the fiber bundles are utilized to stimulate embedded polymer-magnets to achieve axial, lateral, or rotatory displacement of microoptical elements leading to zooming, resolution enhancement, and increased field of view capabilities. All demonstrated systems achieve overall system diameters well below 900 µm, marking a distinct advancement in the miniaturization of actuatable endoscopic devices. This work demonstrates the feasibility of integrating highly functional and compact optical systems within endoscopes, unlocking new potential for their application in diverse fields, for example in minimally invasive (\"keyhole\") surgery or intravascular imaging.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"69"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982310/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00403-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In endoscopy, there is a crucial demand for compact system designs to allow for imaging in narrow spaces and reduce the risk of damage during endoscopic procedures. Enhanced functionality of lensed endoscopes can be realized by integrating actuatable imaging systems with flexible fiber bundles. Conventionally fabricated actuatable endoscopes are, however, limited in their miniaturization capability, typically resulting in system diameters greater than 1 mm. In this work, we present highly compact magnetically actuatable 3D-printed and endoscopically integrated microsystems that are fabricated on the end-facet of imaging fiber bundles using two-photon polymerization. Electromagnetic microcoils affixed to the fiber bundles are utilized to stimulate embedded polymer-magnets to achieve axial, lateral, or rotatory displacement of microoptical elements leading to zooming, resolution enhancement, and increased field of view capabilities. All demonstrated systems achieve overall system diameters well below 900 µm, marking a distinct advancement in the miniaturization of actuatable endoscopic devices. This work demonstrates the feasibility of integrating highly functional and compact optical systems within endoscopes, unlocking new potential for their application in diverse fields, for example in minimally invasive ("keyhole") surgery or intravascular imaging.

磁致动3d打印内窥镜微系统。
在内窥镜检查中,有一个关键的需求是紧凑的系统设计,以允许在狭窄的空间成像,并减少内窥镜检查过程中损坏的风险。通过将可动成像系统与柔性纤维束集成,可增强透镜内窥镜的功能。然而,传统制造的可驱动内窥镜在其小型化能力方面受到限制,通常导致系统直径大于1mm。在这项工作中,我们提出了高度紧凑的可磁致动3d打印和内窥镜集成微系统,该微系统使用双光子聚合在成像光纤束的端面上制造。附着在光纤束上的电磁微线圈用于刺激嵌入的聚合物磁铁,以实现微光学元件的轴向、横向或旋转位移,从而实现缩放、分辨率增强和视野增强。所有演示系统的总直径都低于900微米,标志着可驱动内窥镜设备小型化的显著进步。这项工作证明了在内窥镜中集成高功能和紧凑的光学系统的可行性,为内窥镜在不同领域的应用释放了新的潜力,例如微创(“锁眼”)手术或血管内成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信