The impact of size scales and orientations of polymeric scaffold architectural cues on human macrophage polarisation.

Akhil T Thilakan, Niji Nandakumar, Revathy S Menon, Shantikumar V Nair, Veena Shenoy, Binulal Nelson Sathy
{"title":"The impact of size scales and orientations of polymeric scaffold architectural cues on human macrophage polarisation.","authors":"Akhil T Thilakan, Niji Nandakumar, Revathy S Menon, Shantikumar V Nair, Veena Shenoy, Binulal Nelson Sathy","doi":"10.1088/1748-605X/add06e","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophage polarisation is crucial for initiating inflammation in response to biomaterial scaffolds, significantly influencing tissue integration and regeneration<i>in vivo</i>. Modulating macrophage polarisation towards a tissue-regeneration-favouring phenotype through the physical properties of scaffolds offers a promising strategy to enhance tissue regeneration while minimising unfavourable immune responses. However, the critical impact of scaffold physical properties, such as size-scale dimensions, orientation of architectural cues, and local-stiffness of these cues on macrophage polarisation, remains largely unexplored and inadequately understood. This study investigates the combinatorial effects of the physical properties of 3D scaffolds made from poly (<i>ϵ</i>-caprolactone) on human macrophage polarisation. Our findings indicate that the size-scale dimensions and orientation of the architectural cues of the scaffold play crucial roles in determining cell shape, attachment, and the modulation of key gene expression (iNOS, IL-1<i>β</i>, MRC1, ARG), as well as cytokines (TNF-<i>α</i>, IL-10) release associated with the polarisation of human macrophages. Specifically, in scaffolds with architectural cues at larger scales (⩾300 µm diameter), macrophage polarisation is primarily determined by the size-scale of the architectural cues and scaffold stiffness, rather than orientation. Conversely, at smaller scales (⩽15 µm), the orientation of the scaffold's architectural cues plays a more critical role. These insights underscore the pivotal role of scaffold design in modulating immune responses for enhanced tissue regeneration, offering valuable guidance for the rational development of biomaterial scaffolds in regenerative medicine.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":"20 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/add06e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophage polarisation is crucial for initiating inflammation in response to biomaterial scaffolds, significantly influencing tissue integration and regenerationin vivo. Modulating macrophage polarisation towards a tissue-regeneration-favouring phenotype through the physical properties of scaffolds offers a promising strategy to enhance tissue regeneration while minimising unfavourable immune responses. However, the critical impact of scaffold physical properties, such as size-scale dimensions, orientation of architectural cues, and local-stiffness of these cues on macrophage polarisation, remains largely unexplored and inadequately understood. This study investigates the combinatorial effects of the physical properties of 3D scaffolds made from poly (ϵ-caprolactone) on human macrophage polarisation. Our findings indicate that the size-scale dimensions and orientation of the architectural cues of the scaffold play crucial roles in determining cell shape, attachment, and the modulation of key gene expression (iNOS, IL-1β, MRC1, ARG), as well as cytokines (TNF-α, IL-10) release associated with the polarisation of human macrophages. Specifically, in scaffolds with architectural cues at larger scales (⩾300 µm diameter), macrophage polarisation is primarily determined by the size-scale of the architectural cues and scaffold stiffness, rather than orientation. Conversely, at smaller scales (⩽15 µm), the orientation of the scaffold's architectural cues plays a more critical role. These insights underscore the pivotal role of scaffold design in modulating immune responses for enhanced tissue regeneration, offering valuable guidance for the rational development of biomaterial scaffolds in regenerative medicine.

聚合物支架结构线索的大小尺度和取向对人巨噬细胞极化的影响。
巨噬细胞极化对于生物材料支架引发炎症至关重要,显著影响体内组织整合和再生。通过支架的物理特性调节巨噬细胞向有利于组织再生表型的极化提供了一种有希望的策略,可以增强组织再生,同时最大限度地减少不利的免疫反应。然而,支架物理特性的关键影响,如尺寸尺寸、结构线索的方向和这些线索的局部刚度对巨噬细胞极化的影响,在很大程度上仍未被探索和充分理解。本研究探讨了poly (ϵ-caprolactone)制成的3D支架的物理性质对人巨噬细胞极化的综合影响。我们的研究结果表明,支架结构线索的大小尺寸和方向在决定细胞形状、附着和关键基因表达(iNOS、IL-1β、MRC1、ARG)的调节以及与人巨噬细胞极化相关的细胞因子(TNF-α、IL-10)的释放中起着至关重要的作用。具体地说,在具有较大尺度(直径大于或小于300µm)的建筑线索的支架中,巨噬细胞极化主要由建筑线索的尺寸和支架刚度决定,而不是方向。相反,在较小的尺度上(≤15µm),支架的建筑线索的方向起着更关键的作用。这些发现强调了支架设计在调节免疫反应以增强组织再生中的关键作用,为再生医学中生物材料支架的合理发展提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信