Mana Moassefi, Shahriar Faghani, Ceylan Colak, Shannon P Sheedy, Pamela L Causa Andrieu, Sherry S Wang, Rachel L McPhedran, Kristina T Flicek, Garima Suman, Hiroaki Takahashi, Candice A Bookwalter, Tatnai L Burnett, Bradley J Erickson, Wendaline M VanBuren
{"title":"Advancing endometriosis detection in daily practice: a deep learning-enhanced multi-sequence MRI analytical model.","authors":"Mana Moassefi, Shahriar Faghani, Ceylan Colak, Shannon P Sheedy, Pamela L Causa Andrieu, Sherry S Wang, Rachel L McPhedran, Kristina T Flicek, Garima Suman, Hiroaki Takahashi, Candice A Bookwalter, Tatnai L Burnett, Bradley J Erickson, Wendaline M VanBuren","doi":"10.1007/s00261-025-04942-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Endometriosis affects 5-10% of women of reproductive age. Despite its prevalence, diagnosing endometriosis through imaging remains challenging. Advances in deep learning (DL) are revolutionizing the diagnosis and management of complex medical conditions. This study aims to evaluate DL tools in enhancing the accuracy of multi-sequence MRI-based detection of endometriosis.</p><p><strong>Method: </strong>We gathered a patient cohort from our institutional database, composed of patients with pathologically confirmed endometriosis from 2015 to 2024. We created an age-matched control group that underwent a similar MR protocol without an endometriosis diagnosis. We used sagittal fat-saturated T1-weighted (T1W FS) pre- and post-contrast and T2-weighted (T2W) MRIs. Our dataset was split at the patient level, allocating 12.5% for testing and conducting seven-fold cross-validation on the remainder. Seven abdominal radiologists with experience in endometriosis MRI and complex surgical planning and one women's imaging fellow with specific training in endometriosis MRI reviewed a random selection of images and documented their endometriosis detection.</p><p><strong>Results: </strong>395 and 356 patients were included in the case and control groups respectively. The final 3D-DenseNet-121 classifier model demonstrated robust performance. Our findings indicated the most accurate predictions were obtained using T2W, T1W FS pre-, and post-contrast images. Using an ensemble technique on the test set resulted in an F1 Score of 0.881, AUROCC of 0.911, sensitivity of 0.976, and specificity of 0.720. Radiologists achieved 84.48% and 87.93% sensitivity without and with AI assistance in detecting endometriosis. The agreement among radiologists in predicting labels for endometriosis was measured as a Fleiss' kappa of 0.5718 without AI assistance and 0.6839 with AI assistance.</p><p><strong>Conclusion: </strong>This study introduced the first DL model to use multi-sequence MRI on a large cohort, showing results equivalent to human detection by trained readers in identifying endometriosis.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04942-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Endometriosis affects 5-10% of women of reproductive age. Despite its prevalence, diagnosing endometriosis through imaging remains challenging. Advances in deep learning (DL) are revolutionizing the diagnosis and management of complex medical conditions. This study aims to evaluate DL tools in enhancing the accuracy of multi-sequence MRI-based detection of endometriosis.
Method: We gathered a patient cohort from our institutional database, composed of patients with pathologically confirmed endometriosis from 2015 to 2024. We created an age-matched control group that underwent a similar MR protocol without an endometriosis diagnosis. We used sagittal fat-saturated T1-weighted (T1W FS) pre- and post-contrast and T2-weighted (T2W) MRIs. Our dataset was split at the patient level, allocating 12.5% for testing and conducting seven-fold cross-validation on the remainder. Seven abdominal radiologists with experience in endometriosis MRI and complex surgical planning and one women's imaging fellow with specific training in endometriosis MRI reviewed a random selection of images and documented their endometriosis detection.
Results: 395 and 356 patients were included in the case and control groups respectively. The final 3D-DenseNet-121 classifier model demonstrated robust performance. Our findings indicated the most accurate predictions were obtained using T2W, T1W FS pre-, and post-contrast images. Using an ensemble technique on the test set resulted in an F1 Score of 0.881, AUROCC of 0.911, sensitivity of 0.976, and specificity of 0.720. Radiologists achieved 84.48% and 87.93% sensitivity without and with AI assistance in detecting endometriosis. The agreement among radiologists in predicting labels for endometriosis was measured as a Fleiss' kappa of 0.5718 without AI assistance and 0.6839 with AI assistance.
Conclusion: This study introduced the first DL model to use multi-sequence MRI on a large cohort, showing results equivalent to human detection by trained readers in identifying endometriosis.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits