Feiyi Wang, Aoxing Liu, Zhiyu Yang, Pekka Vartiainen, Sakari Jukarainen, Satu Koskela, Richard Oram, Lowri Allen, Jarmo Ritari, Jukka Partanen, Markus Perola, Tiinamaija Tuomi, Andrea Ganna
{"title":"Effects of parental autoimmune diseases on type 1 diabetes in offspring can be partially explained by HLA and non-HLA polymorphisms.","authors":"Feiyi Wang, Aoxing Liu, Zhiyu Yang, Pekka Vartiainen, Sakari Jukarainen, Satu Koskela, Richard Oram, Lowri Allen, Jarmo Ritari, Jukka Partanen, Markus Perola, Tiinamaija Tuomi, Andrea Ganna","doi":"10.1016/j.xgen.2025.100854","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) and other autoimmune diseases (AIDs) often co-occur in families. Leveraging data from 58,284 family trios in Finnish nationwide registers (FinRegistry), we identified that, of 50 parental AIDs examined, 15 were associated with an increased T1D risk in offspring. These identified epidemiological associations were further assessed in 470,000 genotyped Finns from the FinnGen study through comprehensive genetic analyses, partitioned into human leukocyte antigen (HLA) and non-HLA variations. Using FinnGen's 12,563 trios, a within-family polygenic transmission analysis demonstrated that the aggregation of many parental AIDs with offspring T1D can be partially explained by HLA and non-HLA polymorphisms in a disease-dependent manner. We therefore proposed a parental polygenic score (PGS), incorporating both HLA and non-HLA polymorphisms, to characterize the cumulative risk pattern of T1D in offspring. This raises an intriguing possibility of using parental PGS, in conjunction with clinical diagnoses, to inform individuals about T1D risk in their offspring.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100854"},"PeriodicalIF":11.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 diabetes (T1D) and other autoimmune diseases (AIDs) often co-occur in families. Leveraging data from 58,284 family trios in Finnish nationwide registers (FinRegistry), we identified that, of 50 parental AIDs examined, 15 were associated with an increased T1D risk in offspring. These identified epidemiological associations were further assessed in 470,000 genotyped Finns from the FinnGen study through comprehensive genetic analyses, partitioned into human leukocyte antigen (HLA) and non-HLA variations. Using FinnGen's 12,563 trios, a within-family polygenic transmission analysis demonstrated that the aggregation of many parental AIDs with offspring T1D can be partially explained by HLA and non-HLA polymorphisms in a disease-dependent manner. We therefore proposed a parental polygenic score (PGS), incorporating both HLA and non-HLA polymorphisms, to characterize the cumulative risk pattern of T1D in offspring. This raises an intriguing possibility of using parental PGS, in conjunction with clinical diagnoses, to inform individuals about T1D risk in their offspring.