Deliang Ouyang, Haibin Li, Kang Luo, Mingming Huang, Song Yan, Li Zhou
{"title":"Mesenchymal stem cell derived exosomes as Nanodrug carrier of doxorubicin combined with PVT1 siRNA inhibits the progression of gastric cancer","authors":"Deliang Ouyang, Haibin Li, Kang Luo, Mingming Huang, Song Yan, Li Zhou","doi":"10.1016/j.ajg.2025.01.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and study aims</h3><div>Mesenchymal stem cell-derived exosomes (MSC-Exos) have been used as drug delivery vehicles for the treatment of gastric cancer. This study aimed to explore the effects of doxorubicin-loaded exosomes (Exo-Dox) combined with the long noncoding RNA PVT1 on gastric cancer (GC) development.</div></div><div><h3>Material and methods</h3><div>CCK-8 and immunohistochemistry were used to assess cell proliferation. The morphology and size of the exosomes and Exo-Dox were determined. The distribution of free Exos and Exo-Dox in cells was observed under a fluorescence microscope. Cell migration and invasive ability were assessed using wound healing and Transwell assays. In addition, the protective effects of Exo-Dox were confirmed in a xenograft tumor model.</div></div><div><h3>Results</h3><div>Exosomes were successfully isolated from MSCs and identified. The size of Exo-Dox was greater than that of free Exos. The acidic environment promoted the release of doxorubicin, and exosomes promoted the cellular uptake of doxorubicin. Compared with doxorubicin alone, Exo-Dox exhibited better antitumor effects on gastric cancer, inhibiting the growth, migration and invasion of gastric cancer cells. Additionally, combined therapy of Exo-Dox with si-PVT1 clearly suppressed the proliferation, migration and invasive ability of gastric cancer cells. Exo-Dox combined with si-PVT1 inhibited tumor growth and metastasis in a xenograft model.</div></div><div><h3>Conclusion</h3><div>Doxorubicin-loaded exosomes combined with si-PVT1 suppressed the progression of GC.</div></div>","PeriodicalId":48674,"journal":{"name":"Arab Journal of Gastroenterology","volume":"26 2","pages":"Pages 149-156"},"PeriodicalIF":1.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687197925000127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and study aims
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been used as drug delivery vehicles for the treatment of gastric cancer. This study aimed to explore the effects of doxorubicin-loaded exosomes (Exo-Dox) combined with the long noncoding RNA PVT1 on gastric cancer (GC) development.
Material and methods
CCK-8 and immunohistochemistry were used to assess cell proliferation. The morphology and size of the exosomes and Exo-Dox were determined. The distribution of free Exos and Exo-Dox in cells was observed under a fluorescence microscope. Cell migration and invasive ability were assessed using wound healing and Transwell assays. In addition, the protective effects of Exo-Dox were confirmed in a xenograft tumor model.
Results
Exosomes were successfully isolated from MSCs and identified. The size of Exo-Dox was greater than that of free Exos. The acidic environment promoted the release of doxorubicin, and exosomes promoted the cellular uptake of doxorubicin. Compared with doxorubicin alone, Exo-Dox exhibited better antitumor effects on gastric cancer, inhibiting the growth, migration and invasion of gastric cancer cells. Additionally, combined therapy of Exo-Dox with si-PVT1 clearly suppressed the proliferation, migration and invasive ability of gastric cancer cells. Exo-Dox combined with si-PVT1 inhibited tumor growth and metastasis in a xenograft model.
Conclusion
Doxorubicin-loaded exosomes combined with si-PVT1 suppressed the progression of GC.
期刊介绍:
Arab Journal of Gastroenterology (AJG) publishes different studies related to the digestive system. It aims to be the foremost scientific peer reviewed journal encompassing diverse studies related to the digestive system and its disorders, and serving the Pan-Arab and wider community working on gastrointestinal disorders.