Optimizing Cyanobacterial Biomass for Soil Restoration: Nutrient Enrichment and Microbial Modulation in Degraded Grasslands of Hulun Lake.

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Bingshuai Cao, Zhaoyong Zhang, Yi Tong, Qi Wang, Wenjing Li, Cuilan Wei, Chi Zang, Wenlin Wang
{"title":"Optimizing Cyanobacterial Biomass for Soil Restoration: Nutrient Enrichment and Microbial Modulation in Degraded Grasslands of Hulun Lake.","authors":"Bingshuai Cao, Zhaoyong Zhang, Yi Tong, Qi Wang, Wenjing Li, Cuilan Wei, Chi Zang, Wenlin Wang","doi":"10.1007/s00128-025-04030-z","DOIUrl":null,"url":null,"abstract":"<p><p>The organic and active substances released from cyanobacterial decomposition have a positive effect on improving soil quality and promoting plant growth. However, the mechanism of its influence remains unclear, particularly regarding its impact on grassland soil. The study was conducted in the periphery of eutrophic Hulun Lake using a gradient amendment experiment (0%, 3%, 5%, 10% cyanobacterial biomass) on adjacent degraded grassland soils. This design aimed to assess the effects of cyanobacterial inputs on soil physicochemical parameters and microbial community restructuring. Quantitative analyses revealed significant nutrient enrichment, with available phosphorus (AP), available potassium (AK), and nitrogen pools demonstrating differential responses. Nitrogen species exhibited the most pronounced enrichment: total nitrogen (TN) increased by 26.21%, ammonium nitrogen (NH₄⁺-N) by 41.99%, and nitrate nitrogen (NO₃⁻-N) by 54.96% relative to controls. Concurrently, stoichiometric ratios displayed dose-dependent modulation: the total organic carbon to total nitrogen (TOC/TN) ratio decreased by 3.85% under 5% biomass treatment, whereas TOC/AP and TN/AP ratios increased by 13.23% and 18.03%, respectively, indicating altered carbon-phosphorus-nutrient coupling dynamics. Additionally, cyanobacteria enhanced the alpha diversity of the soil bacterial community without altering its overall structure or composition. The decomposition and nutrient release process of cyanobacteria in the soil mainly occurs in the first 30 days, which can improve the soil nutrient content and enhance bacterial community diversity. The application of cyanobacteria for the remediation of degraded grasslands represents a valuable approach that effectively utilizes cyanobacterial resources.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 5","pages":"75"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-025-04030-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The organic and active substances released from cyanobacterial decomposition have a positive effect on improving soil quality and promoting plant growth. However, the mechanism of its influence remains unclear, particularly regarding its impact on grassland soil. The study was conducted in the periphery of eutrophic Hulun Lake using a gradient amendment experiment (0%, 3%, 5%, 10% cyanobacterial biomass) on adjacent degraded grassland soils. This design aimed to assess the effects of cyanobacterial inputs on soil physicochemical parameters and microbial community restructuring. Quantitative analyses revealed significant nutrient enrichment, with available phosphorus (AP), available potassium (AK), and nitrogen pools demonstrating differential responses. Nitrogen species exhibited the most pronounced enrichment: total nitrogen (TN) increased by 26.21%, ammonium nitrogen (NH₄⁺-N) by 41.99%, and nitrate nitrogen (NO₃⁻-N) by 54.96% relative to controls. Concurrently, stoichiometric ratios displayed dose-dependent modulation: the total organic carbon to total nitrogen (TOC/TN) ratio decreased by 3.85% under 5% biomass treatment, whereas TOC/AP and TN/AP ratios increased by 13.23% and 18.03%, respectively, indicating altered carbon-phosphorus-nutrient coupling dynamics. Additionally, cyanobacteria enhanced the alpha diversity of the soil bacterial community without altering its overall structure or composition. The decomposition and nutrient release process of cyanobacteria in the soil mainly occurs in the first 30 days, which can improve the soil nutrient content and enhance bacterial community diversity. The application of cyanobacteria for the remediation of degraded grasslands represents a valuable approach that effectively utilizes cyanobacterial resources.

优化蓝藻生物量对土壤恢复的影响:呼伦湖退化草地养分富集与微生物调节
蓝藻分解释放的有机和活性物质对改善土壤质量和促进植物生长具有积极作用。然而,其影响机制尚不清楚,特别是对草地土壤的影响。在富营养化的呼伦湖外围,采用梯度修正实验(0%、3%、5%、10%蓝藻生物量)对邻近退化草地土壤进行了研究。本设计旨在评估蓝藻输入对土壤理化参数和微生物群落重构的影响。定量分析显示养分显著富集,速效磷(AP)、速效钾(AK)和氮库表现出不同的响应。氮类物质的富集最为明显:与对照相比,总氮(TN)增加了26.21%,铵态氮(NH₄⁺-N)增加了41.99%,硝态氮(NO₃⁻-N)增加了54.96%。同时,化学计量比表现出剂量依赖性调节:5%生物量处理下,总有机碳/总氮(TOC/TN)比降低了3.85%,而TOC/AP和TN/AP分别增加了13.23%和18.03%,表明碳-磷-养分耦合动态发生了变化。此外,蓝藻在不改变其整体结构或组成的情况下,增强了土壤细菌群落的α多样性。蓝藻在土壤中的分解和养分释放过程主要发生在前30天,可以提高土壤养分含量,增强细菌群落多样性。应用蓝藻修复退化草地是有效利用蓝藻资源的一种有价值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信