{"title":"Integrative In-Silico Analysis of Retroperitoneal Tumors in Colorectal Surgery: Advancements and Implications.","authors":"Wenqing Liu, Weida Chen, Maosheng Tang, Shibo Liu, Haichen Gao, Chengli Miao","doi":"10.1007/s12013-025-01733-2","DOIUrl":null,"url":null,"abstract":"<p><p>Retroperitoneal tumors pose significant challenges in colorectal surgery due to their complex anatomical location, aggressive behavior, and heterogeneous nature. Traditional diagnostic and treatment methods often fall short in effectively managing these tumors. This study leverages advanced in-silico methodologies to perform a comprehensive analysis of retroperitoneal tumors associated with colorectal conditions. By integrating computational modeling and cutting-edge bioinformatics tools, we aim to enhance the understanding of tumor biology, improve diagnostic precision, and optimize surgical outcomes. Our integrative approach combines transcriptomic, and proteomic data from publicly available databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Transcriptomic analysis reveals differentially expressed genes (DEGs) that serve as potential biomarkers for early diagnosis and prognosis. Proteomic analysis highlights critical protein interaction networks and pathways involved in tumorigenesis and metastasis. Our integrative approach identifies key DEGs and constructs protein-protein interaction (PPI) networks to pinpoint critical regulatory genes, such as VWF, PF4, ITGA2B, CXCL8, and GP9, that may serve as potential biomarkers or therapeutic targets. Functional enrichment analysis reveals significant pathways involved in tumorigenesis, including cell proliferation, immune response, and DNA repair. Additionally, immune cell infiltration analysis using the CIBERSORT algorithm demonstrates an immunosuppressive tumor microenvironment characterized by increased regulatory T cells (Tregs) and M2 macrophages, which could contribute to tumor immune evasion.Future studies should focus on clinical validation of these findings and the expansion of computational models to include diverse patient populations. Through these efforts, we aim to revolutionize the management of retroperitoneal tumors in colorectal surgery, ultimately improving patient care and survival rates.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01733-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Retroperitoneal tumors pose significant challenges in colorectal surgery due to their complex anatomical location, aggressive behavior, and heterogeneous nature. Traditional diagnostic and treatment methods often fall short in effectively managing these tumors. This study leverages advanced in-silico methodologies to perform a comprehensive analysis of retroperitoneal tumors associated with colorectal conditions. By integrating computational modeling and cutting-edge bioinformatics tools, we aim to enhance the understanding of tumor biology, improve diagnostic precision, and optimize surgical outcomes. Our integrative approach combines transcriptomic, and proteomic data from publicly available databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Transcriptomic analysis reveals differentially expressed genes (DEGs) that serve as potential biomarkers for early diagnosis and prognosis. Proteomic analysis highlights critical protein interaction networks and pathways involved in tumorigenesis and metastasis. Our integrative approach identifies key DEGs and constructs protein-protein interaction (PPI) networks to pinpoint critical regulatory genes, such as VWF, PF4, ITGA2B, CXCL8, and GP9, that may serve as potential biomarkers or therapeutic targets. Functional enrichment analysis reveals significant pathways involved in tumorigenesis, including cell proliferation, immune response, and DNA repair. Additionally, immune cell infiltration analysis using the CIBERSORT algorithm demonstrates an immunosuppressive tumor microenvironment characterized by increased regulatory T cells (Tregs) and M2 macrophages, which could contribute to tumor immune evasion.Future studies should focus on clinical validation of these findings and the expansion of computational models to include diverse patient populations. Through these efforts, we aim to revolutionize the management of retroperitoneal tumors in colorectal surgery, ultimately improving patient care and survival rates.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.